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ABSTRACT

Obtaining complete and accurate information on schools and their internet con-
nectivity status is a critical first step to accelerating digital connectivity and driving
progress towards SDG4: Quality Education. However, records of school locations
and digital connectivity are often inaccurate, incomplete, or even completely non-
existent in many developing countries. To address this challenge, we combine
machine learning, satellite imagery, and geospatial information for school loca-
tion mapping and internet connectivity status prediction in support of Giga, a joint
initiative by UNICEF and ITU to connect every school to the internet by 2030.
First, we benchmark the performance of Convolutional Neural Networks against
Vision Transformer-based models for automated school mapping. Next, we in-
vestigate the application of machine learning and remote sensing data for school
connectivity prediction. We evaluate our approach in five pilot countries, namely
Bosnia and Herzegovina, Belize, Botswana, Guinea, and Rwanda.

1 INTRODUCTION

According to a joint report by UNICEF and the International Telecommunication Union (ITU), ap-
proximately two-thirds of the world’s school-age children do not have access to the internet (Diallo,
2020). Not only does the lack of internet connectivity limit children’s opportunity to access online
learning resources, but it also prevents them from developing the digital skills needed to thrive in to-
day’s modern economy. Moreover, this digital divide only exacerbates existing inequalities, causing
children from the most disadvantaged households to fall behind even further. In response to these
challenges, UNICEF and ITU jointly launched Giga, a global initiative to connect every school to the
internet by 2030. To achieve this ambitious goal, government agencies and connectivity providers
require accurate and complete school location and internet connectivity data to better estimate the
costs of digitally connecting schools and to plan the strategic allocation of their financial resources.
However, while governments generally have comprehensive records of schools within their national
register, the corresponding geographical coordinates and internet connectivity status information are
often incomplete, inaccurate, invalid, or completely non-existent, especially in developing nations.

Recent advances in artificial intelligence (AI) and Earth Observation (EO) have led to promising
new opportunities to fill data gaps in education infrastructure. In support of the Giga initiative, we
leverage machine learning and remote sensing data to accelerate school mapping and enable internet
connectivity prediction. First, we benchmark the performance of fine-tuned Convolutional Neural
Networks (CNNs) against that of Machine Learning (ML) classifiers trained on features extracted
from pre-trained Vision Transformers (ViTs) for school classification. Second, we investigate the use
of open-source satellite imagery, electricity transmission network information, and internet speed
test data to predict the internet connectivity status of schools. We evaluate our models in five pilot
countries: Bosnia and Herzegovina, Belize, Botswana, Guinea, and Rwanda.

∗These authors contributed equally to this work.
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Figure 1: Examples of school and non-school satellite image tiles for each of the five countries of
interest in this study. ©2024 DigitalGlobe NextView License.

2 DATA

2.1 SCHOOL MAPPING DATASET.

To create our school mapping dataset, we began with official school location data from government
partners, made accessible through Project Connect1, augmented with school point-of-interest (POI)
locations from OpenStreetMap (OSM) and Overture Maps. For our negative examples, we queried
the locations of non-school POIs such as hospitals, churches, warehouses, and offices from Overture
Maps and OSM (see Appendix B for the full list of keywords). To ensure a high-quality dataset,
we removed redundant entries, i.e. multiple points referring to the same building, and deduplicated
names using the RapidFuzz library2. We then leveraged Microsoft building footprints (Microsoft,
2023) and the Global Human Settlements Layer (Marcello et al., 2023) to filter out erroneous points
located in uninhabited areas, e.g. forests, deserts, and bodies of water.

For each location in our dataset, we downloaded 300 x 300 m, 500 x 500 px RGB satellite images
from Maxar with a spatial resolution of 0.6 m/px, centered on the corresponding GPS coordinate.
To ensure the accuracy of the dataset, we manually reviewed the satellite images of known school
locations and removed images where the school appeared to be either absent from the image or
indistinguishable from surrounding buildings. We illustrate in Figure 1 examples of school and non-
school image tiles for each country. For more details on the school mapping dataset creation and
curation pipeline, see Appendix A.

2.2 CONNECTIVITY DATASET.

For the school connectivity dataset, we used a subset of the official school dataset from Project
Connect containing school connectivity information. In line with the ethos of this work to provide
open-source tools for good, we have leveraged openly available datasets to create our feature space,
as summarized in Table 1. We derived a rich set of features from a combination of publicly available
mid-resolution satellite data from Google Earth Engine (GEE), Electrical Power Grid information
from World Bank Group (Arderne et al., 2020), and Speedtest data from Ookla (Ookla LLC., 2023).

1
https://projectconnect.unicef.org/map/countries

2
https://github.com/rapidfuzz/RapidFuzz
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Table 1: School connectivity feature space, including satellite-based feature (1-5), electricity grid
and speed test features (6-7), and regional indicators (8).

Type Source Metrics

1. Land cover MODIS MCD12Q1.006 % coverage per class, mode, variance
2. Population Gridded Population of the World mean, variance, max, min
3. Nightlight VIIRS Nightlight max, min, mean, variance
4. Human Settlement GHS Built Up Characteristics % coverage per class, mode, variance
5. Human Modification Global Human Modification mode, variance, mean, max, min
6. Electrical Transmission Grid World Bank Group distance from school to nearest transmission line

7. Fixed and Mobile Network Performance Ookla Speedtest Data

mean download for mobile & fixed tests
mean upload for mobile & fixed tests
mean latency for mobile & fixed tests
no. of mobile and fixed tests per tile
distance of nearest tile to school
no. of unique mobile & fixed devices

8. Region geoBoundaries one-hot encoded location of ADM2 boundary

Figure 2: Examples of distance from school to nearest transmission line for Rwanda.

Satellite-based features. Open-source, satellite-based measurements are traditionally under-
utilized in low-income contexts, where such data can provide great benefits (Yu, 2014; Haack & Ry-
erson, 2016). Taking each location with connectivity information in our dataset as the center point,
we extract a 1,000 m radius extent of high-resolution satellite data from GEE including MODIS
landcover (Sulla-Menashe & Friedl), VIIRS Nightlight (Elvidge et al.), Global Human Modifica-
tion (Kennedy et al., 2019), Gridded Population of the World (CIESIN, 2018), and Global Human
Settlement Layer (M. & Panagiotis, 2023) data products using the airPy3 data processing package.

Electrical transmission network & internet speed test features. Using the derived map of global
electricity transmission and distribution lines dataset4, we calculate the distance from each school
to the nearest transmission line, as shown in Figure 2. To incorporate speed test data, features are
extracted for the nearest tile to each school for the latest data from October 2023.

Regional indicators. Regional indicators were incorporated by including the administrative level 2
location per school provided by geoBoundaries5 per country. For each school location, the one-hot
encoded administrative boundaries were added as features with the region the school was within
equal to one. For edge cases where the schools were slightly outside of a country’s boundary (oc-
curring due to the label noise in the UNICEF dataset), the administrative boundary that was closest
to the school was taken as the school’s region.

3 METHODS

3.1 SCHOOL MAPPING MODEL

We model school mapping as a binary image classification task wherein we classify each satellite
image tile into school and non-school categories (Yi et al., 2019; Maduako et al., 2022). For all

3
https:/github.com/kelsdoerksen/airPy

4
https://energydata.info/dataset/derived-map-global-electricity-transmission-and-distribution-lines

5
https://www.geoboundaries.org/countryDownloads.html
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Figure 3: An overview of the training data and model types for AI-assisted school mapping (top)
and connectivity prediction (bottom). ©2024 DigitalGlobe NextView License.

experiments, we used a consistent train (80%) and test (20%) split within each country-level dataset.
Table 3 in the Appendix shows the class distribution for the train and test sets across the 5 countries.

Baseline CNNs. We selected three variations of ConvNext, i.e. small (S), base (B), and large (L)
(Liu et al., 2022), VGG-16 (Simonyan & Zisserman, 2014), Xception (Chollet, 2017), and ResNet-
50 (He et al., 2016) as our baseline CNN architectures based on their success in past works (Maduako
et al., 2022; Yazdani et al., 2018; Yi et al., 2019). All models were pre-trained on the ImageNet
dataset (Deng et al., 2009) and fine-tuned on each country-level dataset. Further details on CNN
model configuration and data augmentation can be found in Appendix D.1.

DINOv2 ViT + ML classifiers. We used DINOv2 ViTs (Oquab et al., 2023) pre-trained on the
LVD-142M dataset to generate dense feature embeddings, which were then used as input to shallow
classifiers, including Logistic Regression (LR) and Support Vector Machines (SVM), for the down-
stream task of school classification. To determine the optimal model configuration, we implemented
hyperparameter tuning on the training set using 5-fold cross-validation Grid Search, as described in
further detail in Appendix D.1.

3.2 CONNECTIVITY PREDICTION

Similarly, we model school connectivity as a binary classification task wherein we classify each
school, represented by an n-featured vector (where n ranges from 74-91 dependent on the number of
one-hot encoded administrative boundaries in each country), based on its internet connectivity status.
For all experiments, we used a consistent train (70%) and test (30%) split within each country-level
dataset and 5-fold cross-validation. For model development, we feed the tabular features to ML
classifiers including LR, SVM, Random Forest (RF), Gradient Boosting (GB), and Multi-Layer
Perception (MLP), all trained and tested on a per-country level. Min-max scaling on the training
and testing sets is done for the MLP, SVM and LR models to improve performance as implemented
in scikit-learn. Features with a correlation score of greater than 0.9 are removed from the dataset.
We use a 5-fold cross-validation Grid Search to determine the best model parameters within a given
search space (see Appendix D.2).
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Table 2: A comparison of model performance scores for (a) school mapping, given by the per-
country binary F1 scores (%) of the CNN models and DINOv2 ViT-based models and (b) connec-
tivity prediction, given by per-country F1 scores (%) of ML classifiers for Bosnia and Herzegovina
(BIH), Belize (BLZ), Botswana (BWA), Guinea (GIN), and Rwanda (RWA).

(a) School Mapping F1 scores
BIH BLZ BWA GIN RWA

C
N

N

ConvNext-S 0.80 0.80 0.95 0.83 0.96
ConvNext-B 0.81 0.82 0.96 0.80 0.95
ConvNext-L 0.79 0.83 0.95 0.82 0.96
ResNet50 0.72 0.15 0.94 0.76 0.94
VGG16 0.75 0.73 0.95 0.80 0.95
Xception 0.63 0.07 0.95 0.73 0.94

D
IN

O
v2

ViT-S/14-LR 0.61 0.56 0.91 0.63 0.94
ViT-S/14-SVM 0.65 0.65 0.91 0.67 0.94
ViT-B/14-LR 0.68 0.75 0.93 0.72 0.95
ViT-B/14-SVM 0.71 0.74 0.93 0.70 0.94
ViT-L/14-LR 0.64 0.69 0.92 0.69 0.93
ViT-L/14-SVM 0.69 0.71 0.94 0.70 0.94

(b) Connectivity Prediction F1 scores
BIH BLZ BWA GIN RWA

RF 0.82 0.92 0.73 0.74 0.72
SVM 0.83 0.89 0.72 0.69 0.69
LR 0.83 0.88 0.71 0.66 0.70
GB 0.82 0.90 0.73 0.70 0.69
MLP 0.83 0.86 0.68 0.68 0.71

4 RESULTS & DISCUSSION

For school mapping, we find that the ConvNext model architecture consistently outperforms all
other CNN and ViT-based models, with the highest F1 scores ranging from 0.81 to 0.96 across the
five pilot countries, as detailed in Table 2. These results are generally consistent with past works
benchmarking CNNs against ViT-based foundation models for domain-specific applications (Chen
et al., 2023; Knott et al., 2023). Meanwhile, for school connectivity, we find that the RF classifier
architecture yields the highest F1-sore for Botswana, Guinea, and Rwanda, the GB classifier the
highest F1 score for Belize, and the SVM, MLP, and LR classifiers all yield similar performances
for Bosnia and Herzegovina as shown in Table 2. Consistently, all models struggle in Guinea,
which is the only country within this study with a larger class representation of unconnected schools
over connected schools (see Table 4 of the Appendix). Future work will include leveraging remote
sensing-based encoders, e.g. SatCLIP, MOSAIKS (Klemmer et al., 2023; Rolf et al., 2021).

5 CONCLUSION

In alignment with the UN Sustainable Development Goals (SDGs), including SDG 4, which aims
to “ensure inclusive and equitable quality education and promote lifelong learning opportunities for
all”, we present in this study an end-to-end pipeline for accelerating school mapping and predicting
school connectivity status using a combination of ML and Earth Observation data. Our results
indicate that CNNs generally outperform ViT-based foundation models for satellite image-based
school classification, achieving F1 scores between 0.80 and 0.96 across our pilot countries. We also
demonstrate the viability of using tabular features engineered from satellite images, electric grid
information, and speed test data to predict the connectivity status of schools, with the best F1 scores
ranging from 0.64 to 0.89 across five countries. In line with Giga’s ethos to provide open-source
school connectivity tools, we publicly release our code for AI-enabled school mapping6.

Future Work. One critical component in the adoption of AI-enabled school mapping and connec-
tivity prediction solutions by governments and UNICEF country offices is the integration of human-
in-the-loop validation protocols to ensure that strategic plans for delivering internet connectivity in
schools are based on reliable ML predictions. To this end, we are currently developing interactive
cloud-based platforms for post-classification validation via (1) remote validation by domain experts
and (2) on-the-ground validation, as was done in Tingzon et al. (2020). In this work, we underscore
the importance of field validation in the responsible applications of AI for humanitarian action.

6https://github.com/unicef/giga-global-school-mapping
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APPENDIX

A SCHOOL MAPPING DATASET CREATION

Because data quality substantially impacts model performance, we adopt a data-centric approach
that aims to systematically maximize the quality and richness of our school mapping dataset. We
describe below the steps in our school mapping data creation and curation pipeline, with a partic-
ular focus on increasing the diversity and completeness, accuracy, consistency, unbiasedness, and
relevance of the dataset (Roscher et al., 2023).

Data sources. To create a diverse and representative school mapping dataset, we collated school
location information across multiple data sources. We began with existing school data from govern-
ment partners across the five countries which contain the names and GPS coordinates of the schools.
We then augmented this data with point-of-interest (POI) information of schools from Overture
Maps7 and OpenStreetMap (OSM)8, retrieved using DuckDB and the Overpass API, respectively.
In line with the interests of partner government stakeholders, we focus primarily on locating primary
and secondary schools; we thus excluded schools containing keywords related to early childhood
education (e.g. “preschool”, “nursery”, “kindergarten”), tertiary education (e.g. “university”, “col-
lege”), sports academies (e.g. “swimming”, “dance”, “taekwondo”), and other types of educational
centers (e.g. “driving”, “aviation”, “cosmetics”, “business”, ).

Deduplication. Combining school location data across multiple sources can lead to duplicate points,
i.e. points that are within very close proximity of another school location and thus likely pertain to
the same school building. We identified these redundant entries by creating 25 m buffers around
each point and grouping together points that shared overlapping buffer zones; within each group of
points, we retained one and discarded the rest. We also identified data points with similar names
by applying fuzzy string matching for pairs of schools that are within a distance of 300 m of each
other. Using the RapidFuzz library9, we deduplicated school names by identifying strings that match
with a normalized Levenshtein similarity of at least 85% based on the optimal alignment of the two
strings. For example, if two school locations with the names “Sashe ” and “Sashe Primary School”
match with a score of 86.2%, we would keep one of the points and discard the other.

Removal of uninhabited locations. To remove erroneous data points in uninhabited locations
we leveraged open-source settlement data including the Microsoft building footprints dataset (Mi-
crosoft, 2023), retrieved per country and rasterized to a 10 m resolution GeoTIFF, and the Global
Human Settlements Layer (GHSL) BUILT-C product (Marcello et al., 2023). We created 150 m
buffers around each point and calculated the sum of the pixels within the buffer area using the Mi-
crosoft building footprints and GHSL rasters separately. We retained only the school locations where
the pixel sum from the rasterized Microsoft building footprints and GHSL were both nonzero.

Negative sample retrieval. To generate our set of negative examples, we queried the locations of
non-school POIs from Overture Maps and OSM (see Section B of the Appendix). For countries
where the number of non-school locations n is less than the number of known school locations s,
we augmented the non-school dataset by randomly sampling (s − n) points from a set of points in
inhabited locations, based on the Microsoft buildings dataset, spaced 300 m apart within the country
boundary. We applied the same deduplication and filtering workflow for non-school locations as
with school locations but with the additional step of removing non-school locations within 300 m of
known school locations. This step is done to ensure that no school buildings appear in the periphery
of satellite images labeled as non-school.

Manual review of satellite images. To improve the correctness and precision of the data, we man-
ually reviewed the satellite images of known school locations and removed images where the school
appeared to be either absent from the image or indistinguishable from surrounding buildings. Guided
by auxiliary information from the Google Satellite Hybrid base map, we also manually repositioned
the GPS coordinates of schools that were located more than 300 m away from the actual school
building as a way to resolve location-related discrepancies.

7
https://github.com/OvertureMaps/data

8
https://www.openstreetmap.org/

9
https://github.com/rapidfuzz/RapidFuzz
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B NON-SCHOOL KEYWORDS

We used the following groups of keys and values to query OSM and Overture Maps for non-school
POIs, based on OSM’s tagging system10: (a) amenities, including fast food, food court, cafe, restau-
rant, pub, bar, bank, clinic, doctors, hospital, pharmacy, dentist, veterinary, arts center, cinema,
casino, community center, conference center, events venue, fuel, exhibition center, planetarium, the-
atre, nightclub, courthouse, fire station, police, post office, prison, townhall, crematorium, funeral
hall, internet cafe, marketplace, place of mourning, and place of worship; (b) buildings, including
commercial, industrial, office, retail, warehouse, church, cathedral, chapel, mosque, temple, syna-
gogue, shrine, supermarket, fire station, police, prison, hospital, museum, and military; (c) craft, in-
cluding agricultural engines, atelier, bakery, blacksmith, brewery, cabinet maker, carpenter, electron-
ics repair, distillery, and oil mill; (d) healthcare, including audiologist, birthing center, chiropractor,
dentist, midwife, occupational therapist, optometrist, physiotherapist, psychologist, speech thera-
pist, blood bank, blood donation, and vaccination center; (e) historic, including church, cathedral,
castle, mosque, and tower; (f) land use, including commercial, retail, industrial, warehouse, ceme-
tery, and religious; (g) shopping, including bakery, beverages, brewing supplies, butcher, cheese,
chocolate, coffee, confectionery, convenience, farm, food, general, department store, kiosk, mall,
supermarket, wholesale, beauty, fabric, fashion, electronics, garden centre; and (h) tourism, includ-
ing, guest house, hostel, hotel, motel, museum, chalet, apartment, zoo.

C CLASS DISTRIBUTIONS

Tables 3 and 4 show the class distributions for school mapping and connectivity prediction, respec-
tively. We note that the usage of supervised learning for the connectivity prediction task, namely,
requiring connectivity labels for school samples, results in a lower number of school samples for the
connectivity prediction task than the school mapping task.

Table 3: The class distribution across the training and test sets of Bosnia and Herzegovina (BIH),
Belize (BLZ), Botswana (BWA), Guinea (GIN), and Rwanda (RWA).

Training Set (80%) Test Set (20%) Total
School Non-school Total School Non-school Total

BIH 576 3,283 3,859 142 821 963 4,822
BLZ 178 674 852 55 156 211 1,063
BWA 757 1,329 2,086 182 338 520 2,606
GIN 787 1,336 2,123 202 327 529 2,652
RWA 2,262 2,667 4,929 562 668 1,230 6,159

Table 4: The class distribution across the training and test sets of Bosnia and Herzegovina (BIH),
Belize (BLZ), Botswana (BWA), Guinea (GIN), and Rwanda (RWA).

Training Set (70%) Test Set (30%) Total
Connected Not Connected Total Connected Not Connected Total

BIH 651 284 935 278 123 401 1336
BLZ 168 52 220 75 20 95 315
BWA 327 307 634 149 124 273 907
GIN 286 373 659 113 170 283 942
RWA 1337 1011 2348 551 456 1007 3355

D MODEL CONFIGURATIONS

D.1 SCHOOL MAPPING MODEL

Baseline CNNs. All CNN models used in this study were pre-trained on the ImageNet dataset (Deng
et al., 2009) and fine-tuned on the designated training sets of each country using cross-entropy loss
with label smoothing set to 0.1 for regularization. We resized all images to 224 x 224 px and
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implemented data augmentation in the form of vertical and horizontal flips for the training set.
Across all models, we used an Adam optimizer, set the batch size to 32, and used an initial learning
rate of 1e−5 that decays by a factor of 0.1 after every 7 epochs of no improvement. For the ResNet
models, we also applied a dropout layer with a probability of 0.5 before the fully connected layer to
prevent overfitting. We set the maximum number of epochs to 60, with early stopping if the learning
rate dipped below 1e−10.

DINOv2 ViT + ML classifiers. We used the DINOv2 small (ViT-S), base (ViT-B), and large (ViT-
L) architectures with a 14 x 14 patch size to extract dense feature embeddings of size 385, 768,
and 1024, respectively from images resized to 560 x 560 px. These feature embeddings are then
used as input to the downstream ML classifiers LR and SVM. We implemented hyperparameter
tuning through a 5-fold grid search cross-validation scheme. For LR, our search space included the
norm of the penalty (L1 and L2) and the regularization parameter C, (0.001, 0.01, 0.1, 1.0, and
10). For SVM, our search space included the kernel type (linear, polynomial, radial basis function,
and sigmoid), the kernel coefficient gamma (1, 0.1, 0.01, 0.001, and 0.0001), and the regularization
parameter C (0.001, 0.01, 0.1, 1.0, and 10). We also experimented with different scaling techniques
including standard scaling, min-max scaling, and robust scaling as implemented in scikit-learn.

D.2 CONNECTIVITY MODEL

Each model leverages hyperparameter tuning through a 5-fold grid search cross-validation scheme,
with search spaces defined in Table 5.

Table 5: School connectivity model parameter search spaces for Random Forest (RF) Support Vector
Machines (SVM), Logistic Regression (LR), Gradient Boosting Classifier (GB), and Multilayer
Perceptron (MLP).

Model Parameters

RF

max depth: 80, 90, 100
max features: 2, 3, 4
min samples leaf : 3, 4, 5
min samples split: 4, 6, 8
n estimators: 100, 200, 300, 500

SVM

C: 0.001, 0.01, 0.1, 1.0, 10.0
kernel: linear, poly, rbf, sigmoid
degree: 1, 2, 3, 4
gamma: scale, auto

LR penalty: l2, None
C: 0.01, 0.1, 1.0

GB

loss: log loss, exponential
learning rate: 0.05, 0.1, 0.5, 1
n estimators: 100, 200, 300
criterion: freidman-mse, squared-error
min samples split: 2, 4, 6
min samples leaf : 1, 3, 5
max features: sqrt, log2, None

MLP

hidden layer sizes: (100,), (150,), (200,)
activation: logistic, tanh, relu
solver: lbfgs, sgd, adam
alpha: 0.0001, 0.005, 0.001
learning rate: constant, invscaling, adaptive
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