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ABSTRACT

Training neural networks for large-scale land cover classification from satellite
imagery requires extensive labels for training and evaluation. While most meth-
ods are designed around dense annotations, another promising idea is to rely on
sparse labels, such as openly available in-situ data. However, these data pose chal-
lenges in terms of model design and training. In this paper, we present a specially
designed neural network architecture for sparsely labeled land cover classification
from Sentinel-2 images and LUCAS data. Our network is a variant of Graph U-
Net which represents images as graphs and uses transformer-inspired graph convo-
lutional layers and pooling layers based on hierarchical image oversegmentations.
Additionally, we adapt deep bilateral filtering modules to this architecture. In our
experiments, we demonstrate that our network is able to learn from sparse labels
more efficiently than traditional approaches, outperforming standard U-Nets.

1 INTRODUCTION

Land cover, i.e., spatial information on the Earth surface’s biophysical properties, is essential for
a large number of scientific and practical fields, including climate science, regional planning, and
disaster management. To obtain large-scale land cover maps, researchers and practitioners have re-
lied on the automated interpretation of satellite images using deep learning methods. In this context,
sparsely labeled classification, where the true label of only very few pixels is known, is of particular
interest, as dense labels are expensive to obtain for large areas.

In this paper, we use labels from Eurostat’s in-situ land use/cover area frame statistical survey (LU-
CAS) to predict land cover from multispectral Sentinel-2 imagery for the year 2018. LUCAS data
has previously been used for training machine learning models for general land cover mapping
(Mack et al., 2017; Pflugmacher et al., 2019; Weigand et al., 2020; Mirmazloumi et al., 2022) or
with a special focus on crop type mapping (Conrad et al., 2010; d’Andrimont et al., 2021). However,
the problem of label sparsity is typically circumvented by using either pixel-wise or segment-wise
hand-crafted features as model inputs. Our work, on the other hand, focuses on image-based deep
learning methodologies that directly operate on images and are thus able to take into account context
on varying spatial scales.

Specifically, we present a variant of Graph U-Net (Gao & Ji, 2019) using transformer-based graph
convolutions (Shi et al., 2021) and pooling layers based on hierarchical oversegmentations using the
Quickshift algorithm (Vedaldi & Soatto, 2008). By integrating clustering information directly into
the network architecture, we incorporate methods from unsupervised learning into our supervised
learning pipeline, enabling more efficient learning from sparse labels. A similar approach has previ-
ously been taken by Liu et al. (2022), who adapt a Graph U-Net to exploit hierarchical superpixels
based on minimum spanning trees for pooling in graph neural networks to perform land cover clas-
sification based on hyperspectral imagery. While not the main focus of their work, experiments also
demonstrate the model’s general capabilities in a setting with artificially reduced labels. Specially
focused on the task of sparsely labeled land cover classification, Maggiolo et al. (2022) use fully
connected random fields to improve classification results from sparse annotations. Closely related,
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Wu et al. (2022) present a deep bilateral filtering module to produce spatially smooth feature maps,
which we also adapt to the proposed architecture in this study.

2 METHODOLOGY

2.1 MODEL ARCHITECTURE

We first reframe the original pixel-wise land cover classification task as a node classification task
by representing the image as its pixel graph. More technically, the pixel graph of an image X
is represented as a node matrix VX , which is simply computed by flattening the image’s spatial
dimensions, and a set of undirected edges, E, which is initialized by connecting each node to itself
and its 8 spatial neighbors with respect to the original grid topology of X. The neural network
classifier now operates directly on the graph and obtains a node-wise classification result: VŶ =
fθ((VX ,E)). Finally, we can recover the original grid representation by simply rearranging VŶ
into its original grid.

To propagate features between our Graph U-Net’s layers, graph convolution layers substitute the
image-based convolutions in the U-Net. In our model in particular, we use a graph convolution op-
erator based on multi-head attention transformers, where each node’s feature xi ∈ VX is modulated
based on its neighbors N (i) according to

x̃i = Wrxi +
∑

j∈N (i)

aijWvxj with aij = softmax
(
(Wqxi)

T (Wkxj)√
d

)
, (1)

where Wr and Wv are learnable matrices for the root node and the neighbor nodes and aij is the
attention coefficient, calculated from the query and key matrices Wq and Wk, as well as number of
output dimensions d.

The main advantage of using Graph U-Nets over standard U-Nets in the context of sparsely labeled
land cover classification, however, is the increased flexibility with regard to pooling. This is be-
cause, unlike in standard U-Nets, the pooling layers in Graph U-Net must not preserve the Euclidian
topology of the original images. Thereby, they offer a suitable interface for incorporating clustering
information into the network at various levels. In particular, we make use of the Quickshift over-
segmentation algorithm, which uses a granularity parameter τ to control the number of segments,
where a higher τ leads to fewer segments.

We apply Quickshift with different τ , resulting in K oversegmentations with decreasing granularity
{Q(X, τ1),Q(X, τ2), ...,Q(X, τK)}. In the network’s pooling layers, features are averaged over all
nodes within the same segment, such that each segment in Q(X, τk) is represented as a node in the
pooled result (VX ,E)k. To perform multiple of these pooling operations consecutively, we make
use of the strictly hierarchical nature of Quickshift, meaning that if two pixels are assigned to the
same segment at any τ , they are guaranteed to also be assigned to the same segment for any larger
τ . This way, (VX ,E)k can unambiguously be assigned to new segments based on Q(X, τk+1)
for a subsequent pooling operation, and so on. As for the edges, two nodes in the pooled graph
(VX ,E)k share an edge, if the corresponding segments in Q(X, τk) are adjacent with respect to an
8-neighborhood. For unpooling a graph (VX ,E)′k in the decoder, we reverse the pooling operation
by first initializing a graph (VX ,E)′k−1 based on the topology induced by Q(X, τk−1). Due to the
hierarchical nature of the oversegmentations, we can again unambiguously assign a copy of a node’s
features in (VX ,E)′k to each related node in (VX ,E)′k−1.

We furthermore adapt a deep bilateral filtering module to our model architecture. The goal of deep
bilateral filtering is to increase homogeneity in intermediate feature maps without imposing signifi-
cant blurring on edges. To make bilateral filtering, originally known from image processing, feasible
for application inside deep learning architectures, the receptive field of the filter is bounded by re-
placing the Gaussian kernel from the original formulation with a uniform kernel. To perform deep
bilateral filtering on a graph in particular, each node’s feature xi is replaced with a weighted sum
of its neighbors’ features. The weights are given by a similarity score sij based on the Euclidian
feature distance:

x̃i =
1∑

j∈N (i) sij

∑
j∈N (i)

sijxj with sij = exp (−∥xi − xj∥). (2)
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In our implementation, bilateral filtering is applied as part of the skip connection before the subse-
quent concatenation with the corresponding feature map in the decoder.

A graphical outline of the final architecture is provided in Figure 1.

Figure 1: Outline of the proposed Graph U-Net model architecture used to predict land cover from
Sentinel-2 images. The labels stem from pointwise LUCAS in-situ data and thus only refer to a
single pixel of the predicted land cover map, as indicated by the marker: First, multiple Quick-
shift oversegmentations of the image with varying levels of granularity are computed (gray arrows).
These oversegmentations are used to pool features throughout the image encoder (red arrows). The
decoder (blue arrows) mirrors the structure of encoder and uses skip connections including deep
bilateral filtering (green arrows).

2.2 DATASET

We conduct our experiments on a dataset based on the LUCAS survey from 2018, which spans
across the EU-28 states. The land cover survey broadly differentiates between the classes artificial
land, cropland, woodland, grassland, shrubland, bare land and lichens/moss, water, and wetlands.

To generate a dataset suitable for training an image-based deep neural network, we extract a 64×64
image patch from a Sentinel-2 composite using the red, green, blue and near infrared channels at
each LUCAS location. The labeled pixel is at least 5 pixels away from the patch boundary to guar-
antee sufficient spatial context. In total, there are 337854 data samples, which are geographically
divided into training, validation, and test split. In particular, LUCAS data from Austria, Denmark,
Finland, France, Ireland, Italy, Latvia, the Netherlands, Poland, Romania, and Slovakia are used
for training. Belgium, Bulgaria, Cyprus, Estonia, Germany, Hungary, Malta, Slovenia, Spain are
used for validation. Finally, Czech Republic, Croatia, Greece, Lithuania, Luxembourg, Portugal,
Sweden, and the United Kingdom are used for testing.

3 EXPERIMENTS

We implement U-Net and Graph U-Net, as described above, using the same overall parameters: Our
networks perform two transformer-based convolutions with 4 attention heads and subsequent batch
normalization and activation with ReLU, before each pooling operation. The number of features
per pixel/node is increased from 4 to 64 in the first layer and subsequently doubled within each
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double convolution. Quickshift segmentations are pre-computed offline, using 300 for the ratio
for the spatial-spectral tradeoff and τ = {3, 6, 9, 12} for controlling the hierarchical segmentation
granularities.

We train all networks with a batch size of 32 using the Adam optimizer with an initial learning
rate of 1 × 10−4 and a weight decay of 1 × 10−5. The learning rate is reduced by a factor of 2
once performance on the validation data stagnates for at least two epochs. Training is ultimately
concluded when performance on validation data is stagnant for five overall epochs.

We compare the accuracies and F1-scores of U-Net and our Graph U-Net, averaged across the test
regions of our data, weighted by the respective number of samples in each region. Like during
training, the metrics can only be evaluated at the LUCAS locations. The results are displayed in
Table 1. Moreover, a comparsion of two key computational properties of the different models,
number of parameters and throughput (including pre-processing) on a single NVIDIA A100 GPU
is given in Table 2. Finally, we visualize predicted land cover maps for some of the samples for
qualitative comparison in Figure 2.

Table 1: Overall accuracies and F1-scores of the trained model on the test portion of the LUCAS-
based test dataset.

Overall accuracy in % F1-score in %
U-Net 69.9 48.8
U-Net + DBF 71.2 50.0
Graph U-Net 70.6 49.3
Graph U-Net + DBF 71.7 51.4

Table 2: Computational properties of the models.
# Parameters Throughput in # samples per s

U-Net 28.9M 932
U-Net + DBF 737
Graph U-Net 41.6M 76
Graph U-Net + DBF 73

Figure 2: Images, sparse LUCAS labels as indicated by the markers, and predicted land cover maps
of the different neural networks for three samples in Hamburg, Germany, Balearic Islands, Spain,
and Lapland, Finland (top to bottom). Artifacts within five pixels of the image patch boundary are
due to the dataset design and can be ignored.

It can be observed that Graph U-Nets with pooling operations based on Quickshift oversegmen-
tations are able to slightly outperform their standard convolutional counterparts in terms of both
overall accuracy and F1-score. In the qualitative comparison we note that Graph U-Nets based on
hierarchical oversegmentations, as well as the networks employing deep bilateral filtering modules

4



ICLR 2024 Machine Learning for Remote Sensing (ML4RS) Workshop

tend to produce less noisy results with fewer disjoint regions, which is a desired property of land
cover maps. At the same time, the networks are still able to detect land cover details such as the
canal in the Germany sample or the road in the Finland sample.

Regarding computational demand, Graph U-Nets’ data rate is about 10 times less than that of stan-
dard U-Nets due to the segmentation overhead and complex graph-based processing. However,
given that training and inference is still feasible on a single GPU within reasonable time, we argue
that Graph U-Nets remain a valid option, even for large-scale land cover classification. The addi-
tional use of deep bilateral filtering has a comparably small negative effect in this regard and does
not introduce any additional learnable parameters to the model.

4 CONCLUSION

In this work, we present Graph U-Nets with transformer-based graph convolutions,
oversegmentation-based pooling, and deep bilateral filtering as a new network architecture for the
task of sparsely supervised land cover representations. In initial experiments, we demonstrate both
qualitatively and quantitatively that the network is able to learn from pixel-wise labels more effi-
ciently than standard U-Nets and thus achieve better accuracy.

In future work, we plan to conduct more experiments regarding the network’s architecture by vary-
ing, e.g., the Quickshift segmentation parameters, the graph convolution operator, the perceptive
field of the bilateral filtering module, and the dataset size. We also plan to improve the evaluation
of the network performance: In addition to the test portion of the LUCAS-based dataset, established
high-resolution land cover products may be used or label-independent metrics related to spatial en-
tropy may be considered.
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