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ABSTRACT

Airborne hyperspectral imaging has great potential for land cover mapping with
very detailed nomenclatures thanks to its spectral dimension, which is highly
informative about the chemical composition of matter. In the past years, the
scarcity of training data in regards to the significant spectral intra-class vari-
ability has motivated the development of inductive biases for the generalization
of deep learning classification models. In contrast, we investigate in this pa-
per an orthogonal line of research which consists in integrating deductive bi-
ases derived from a priori physical knowledge into weakly supervised learning
in order to improve the robustness of classification models to changes in local
irradiance conditions. Our experiments on simulated and real data demonstrate
the benefits of our method in terms of classification accuracy. Code & data:
https://github.com/Romain3Ch216/p3VAE/

1 INTRODUCTION

Deep learning techniques have gained widespread attention in airborne hyperspectral image pro-
cessing, including land cover classification, on which we focus in this paper. The pixel information
of hyperspectral images provided in ground-level reflectance, at very high spatial resolution and
very high spectral resolution on a wide spectral range, is indeed highly informative of the chemical
composition of the land surface (e.g. asphalt, gravel, bare soil). Nonetheless, the principal challenge
of pixel-wise hyperspectral image classification lies in the scarcity of training data (prohibitively
expensive to acquire through field campaigns) with respect to the diversity of ground materials and
to their large spectral intra-class variability. In order to reach high generalization performance in
this weakly supervised regime, most works have focused on the integration of inductive biases into
learning. Inductive biases commonly refer to the assumptions made over the model architecture
(e.g. attention mechanisms (Sun et al., 2022)), the objective function (e.g. contrastive learning
(Zhao et al., 2022)) or the learning algorithm (e.g. few-shot learning (Liu et al., 2018)).

In contrast, we aim in this paper to integrate deductive biases derived from physical prior knowledge.
The motivation of our work is that the variations of the local irradiance, a non-observed physical
quantity that depends on the 3D geometry of the image rather than on the land cover itself, can
be related to specific spectral variations through a radiative transfer model. Our methodology aims
to leverage this a priori physical knowledge to improve the robustness of a classification model to
irradiance variations in the context of scarce labeled data. In contrast to Aragon-Calvo & Carvajal
(2020) and Zérah et al. (2023) that respectively use the framework of the autoencoder or variational
autoencoder (VAE) (Kingma & Welling, 2014) to inverse a fully physical forward model, our work
combines standard neural network layers with non-trainable physics layers in the decoder of a semi-
supervised VAE (Kingma et al., 2014). Besides, in contrast to (Takeishi & Kalousis, 2021) that
complement an imperfect physical model with a neural network, we do the other way around by
complementing a neural network with physics layers that analytically compute the spectral shift of
the data according to the variations of a subset of the latent space.

The outline of the paper is as follows. In section 2, we derive a physics deductive bias for hyperspec-
tral representation learning and introduce a methodology to integrate this bias into a classification
model. In section 3, we present the simulated and real data on which we validate our methodology
through numerical experiments, detailed in section 4. Finally, we conclude in section 5.

∗Work done while at ONERA. Correspondance to romain.thoreau@cnes.fr
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2 METHODOLOGY

2.1 PHYSICS DEDUCTIVE BIASES FOR HYPERSPECTRAL REPRESENTATION LEARNING

Hyperspectral generative factors1 In the remote sensing community, hyperspectral images are
usually preprocessed by atmospheric correction codes, prior to the land cover classification, in order
to estimate the ground-level reflectance from the sensor-level radiance. The reflectance is the ratio
of the reflected radiant flux on the incident radiant flux, and only depends on the matter chemical
composition. However, most atmospheric correction codes (e.g. COCHISE (Miesch et al., 2005))
assume a flat ground, hence uniform irradiance over every pixels, resulting in different reflectance
estimates for the same land cover with different local irradiance (that depends on the scene 3D
geometry). Therefore, we suggest in this paper to model the generative factors of hyperspectral
data as follows: 1) the pixel land cover (assuming that one pixel contains only one material), 2)
the local irradiance, and 3) intrinsic factors that reflect slight variations in the material chemical
composition (e.g. variations in water content of different trees from the same species) and larger
variations in material composition due to the fact that the nomenclature groups different materials
under the same class (e.g. different tree species gathered in a unique class).

A deductive bias derived from a radiative transfer model We aim to integrate into the learning
process a priori information defined by the ratio of the estimated reflectance x by an atmospheric
correction code over the true reflectance2 x∗. We approximate this quantity (see the appendix for
further details), that expresses how the signal varies at a wavelength λ given variations of the direct
irradiance, denoted as Idir, and the diffuse irradiance (scattered by the atmosphere), denoted as Idif :

x

x∗ (λ) ≈
I∗dir(λ) + I∗dif (λ)

Icodedir (λ) + Icodedif (λ)
(1)

where the superscript ∗ is given for non-observed true physical quantities and the superscript code is
given for physical quantities assumed by the atmospheric correction code. The true direct irradiance
I∗dir differs from the assumed direct irradiance Icodedir in shadows and in slopes. We model shadows
with a quantity δ∗dir ∈ [0, 1] corresponding to the portion of pixel directly lit by sun, and slopes
with the local solar zenith angle, denoted as Θ∗, in contrast to the solar zenith angle assumed by the
atmospheric correction code Θcode. The true diffuse irradiance I∗dif mainly differs from the assumed
diffuse irradiance Icodedif for pixels from where a small portion of the sky is visible. This quantity is
commonly named the sky viewing angle factor that we denote as Ω∗ ∈ [0, 1]. Overall, we model the
true direct and diffuse irradiance as follows:

I∗dir(λ) = δ∗dir ·
cosΘ∗

cosΘcode
· Icodedir (λ) I∗dif (λ) = Ω∗ · p∗Θ · Icodedif (λ) (2)

where p∗Θ is a correction coefficient that accounts for the anisotropy of the diffuse irradiance. Fig. 1
illustrates the radiative terms used in our model and Fig. 2 illustrates the ratio we derived for varying
irradiance conditions, showing how non-linear the spectral variations are with respect to direct and
diffuse irradiance variations.

2.2 INTEGRATION OF DEDUCTIVE BIASES INTO A SEMI-SUPERVISED VAE

In this section, we introduce a formalism entitled p3VAE that integrates the deductive bias described
in section 2.1 into a semi-supervised VAE (Kingma et al., 2014).

Latent variables modeling We split the latent space into three subsets ZA, ZP and Y . First, the
continuous latent variable zA ∈ ZA is meant to encode the intrinsic factors of variation. Second,
the continuous latent variable zP ∈ ZP is meant to encode the irradiance conditions, precisely the
physical quantity δ∗dir · cos Θ∗ that weights the direct irradiance. Third, the discrete latent variable
y ∈ Y is meant to encode the land cover class. Additional details about the choice of probability
distributions for priors and posteriors are given in the appendix.

1The factors that individually account for a source of variability in the data (Desjardins et al., 2012).
2The reflectance that would be computed by an atmospheric correction code with the exact knowledge of

the local irradiance conditions.
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Idif

Idir

Figure 1: Illustration of irra-
diance terms.
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Figure 2: Ratio of the estimated reflectance over the true
reflectance for varying irradiance conditions.

Integrating physics into the decoder The decoder is the combination of standard neural network
layers fθ

A with a non-trainable physical part fP . First, fθ
A estimates the true reflectance x∗ =

fθ
A(y, zA) given the land cover and the latent representation of the intrinsic intra-class variability.

Then, fP , based on eq. 1, computes the spectral shift induced by the variation of the local irradiance,
encoded by zP :

fP (zP ,x
∗) =

zP
Icode
dir

cos Θcode + g(zP )I
code
dif

Icodedir + Icodedif

x∗ (3)

where g is an affine function that empirically approximates the local diffuse irradiance (weight and
bias of g are hyperparameters). All in all, the output of the decoder is fP ◦fA(y, zA, zP ). Additional
details on the likelihood are given in the appendix.

Optimization We optimize the objective function derived by Kingma et al. (2014), composed of
a supervised part and an unsupervised part (when y is not observed). We introduce a slight but
fundamental variation to the algorithm: we do not back-propagate the gradients of the unsupervised
part of the objective with respect to the parameters of fθ

A. As a matter of fact, the high flexibility
of fθ

A could lead to very low reconstruction errors on the training data with inconsistent values of
(zA, zP , y), i.e. an entanglement of the local irradiance, of the intrinsic factors of variations and of
the land cover.

Inference At inference, Kingma et al. (2014) use the approximate predictive distribution qϕ(y|x)
to make predictions. However, although the true predictive distribution pθ(y|x) is intractable, we
perform Monte Carlo sampling to estimate argmaxy pθ(y|x). More precisely, we use the two
recognition networks of the encoder to perform importance sampling:

pθ(y|x) ∝ Ey∗∼qϕ(y|x)EzA,zP∼qϕ(zA,zP |x,y∗)
p(zA, zP )

qϕ(zA, zP |x)
pθ(x|y,zA, zP ) (4)

The major consequence of this inference scheme is to explicitly use the physical part fP .

3 DATA

Simulated data We simulated an airborne hyperspectral image with the radiative transfer software
DART (Gastellu-Etchegorry et al., 2012) composed of five land cover classes (#1 vegetation, #2
sheet metal, #3 sandy loam, #4 tile and #5 asphalt). Some classes group different materials (i.e.
subclasses) for more realistic intrinsic intra-class variability. The training data set only partially
represents the diversity of irradiance conditions, especially for class #3 whose labeled pixels are
uniformly exposed to the sun. On the contrary, the unlabeled data set and the test set include data
points with a greater variety of irradiance conditions. Additional details are given in the appendix.

Real data We used subsets of the airborne hyperspectral image acquired during the CAMCATT-
AI4GEO experiment (Roupioz et al., 2023), publicly available at https://camcatt.sedoo.
fr/. We labeled approximately 20,000 pixels through a field campaign, divided into eight land
cover classes (#1 Tile, #2 Asphalt, #3 Vegetation, #4 Painted sheet metal, #5 Water, #6 Gravels, #7
Metal and #8 Fiber cement). Additional details are given in the appendix.
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4 EXPERIMENTS

Experimental plan We compared our hybrid model, p3VAE, to a semi-supervised VAE (Kingma
et al., 2014) and to a common spectral CNN architecture optimized in a supervised way. We tested
two training options for the CNN: training #1 over the labeled set only and training #2 over the la-
beled and unlabeled sets. Models are optimized with the Adam algorithm (Kingma & Ba, 2014) and
hyperparameters, including penalty coefficients of the weight decay, weights of the KL divergence
term and parameters of g, are selected on a validation set. 10 experiments with different random
seeds were done.

Table 1: Mean F1 score over 10 runs on the simulated (left) and real (right) data sets .

Classes
Inference model Veg. S.M. S.L. Tile Asp. Avg

CNN training #1 0.90 0.81 0.77 0.79 0.75 0.80
training #2 0.92 0.79 0.90 0.87 0.86 0.86

VAE qϕ(y|x) 0.93 0.80 0.87 0.86 0.74 0.84
pθ(y|x) 0.94 0.88 0.90 0.92 0.85 0.90

p3VAE qϕ(y|x) 0.92 0.82 0.88 0.87 0.81 0.86
pθ(y|x) 0.96 0.97 0.90 0.90 0.93 0.93∗

Classes
Tile Asp. Veg. S.M. Wat. Gra. Met. F.C. Avg

0.92 0.41 0.91 0.92 0.83 0.89 0.87 0.56 0.79
0.96 0.53 0.98 1.00 0.99 0.98 0.99 0.87 0.91

0.94 0.27 0.88 0.96 0.83 0.92 0.96 0.66 0.80
0.82 0.40 0.86 0.73 0.84 0.60 0.79 0.63 0.71

0.95 0.51 0.98 0.99 0.98 0.99 0.96 0.81 0.90
0.93 0.49 0.97 0.91 0.99 0.79 0.90 0.78 0.84

∗ A statistical hypothesis test shows that the difference of average F1 score between the vanilla VAE and p3VAE is significant (0.3% p-value).

(a) (b) (c) (d)

Figure 3: (a) RGB composition of a real test hyperspectral scene composed of roofs in fiber cement
(b) VAE land cover predictions (c) p3VAE land cover predictions (d) p3VAE zP predictions.

Classification accuracy Tab. 1 reports the mean F1 score over 10 runs on both data sets. On
simulated data, p3VAE globally outperformed the VAE and the CNN by large margins (in regards
to the small standard deviations on the order of 0.01 for every models) when the approximation
of argmaxy pθ(y|x) is used, even when the CNN is trained with more labeled data (training #2).
In particular, a very large increase was reached compared to the VAE and the CNN, as well as to
p3VAE with the use of qϕ(y|x), for class #3 that includes test spectra under very different irradiance
conditions than training spectra. We argue that this is due to the explicit use of the physical part
that naturally extrapolates during inference to unseen irradiance conditions during training. On
real data, p3VAE reached higher accuracy than the VAE and the CNN, though the estimation of
argmaxy pθ(y|x) significantly led to less accurate results than the direct use of qϕ(y|x). We believe
that this difference of performance can be explained by the larger intrinsic intra-class variability in
the real data set. Qualitatively, Fig. 6 (see additional land cover maps in the appendix) shows that the
latent variable zP can indeed be interpreted as the factor δ·dircosΘ that weights the direct irradiance
(that is low in shadows and high on roofs inclined towards the sun), and that p3VAE improved the
classification of ambiguous fiber cement pixels due to low irradiance.

5 CONCLUSION

In this paper, we introduced a methodology to integrate physics deductive biases into a variational
autoencoder for hyperspectral image classification. Numerical experiments demonstrated the higher
extrapolation capacity of our method compared to conventional machine learning models in a weakly
supervised regime for pixels under out-of-distribution irradiance conditions. In future work, we
would like to extend our methodology to handle land cover classes without training labels.
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A APPENDIX

A.1 APPROXIMATION OF THE RATIO x/x∗

We assume, as most atmospheric codes do, that land surfaces are lambertian, i.e. that they reflect ra-
diation isotropically. The reflectance of a pixel at wavelength λ is commonly defined in the literature
as follows:

x(λ) =
πRdir(λ)

Itot(λ)τdir(λ)
with

{
Rdir(λ) = Rtot(λ)−Renv(λ)−Ratm(λ)

Itot(λ) = Idir(λ) + Idif (λ) + Icoup(λ) + Irefl(λ)
(5)

where:

⋆ Rtot is the radiance measured by the sensor,
⋆ Ratm is the portion of Rtot that is scattered by the atmosphere without any interactions

with the ground,
⋆ Renv is the portion of Rtot that comes from the neighbourhood of the pixel,
⋆ Rdir is the portion of Rtot that comes from the pixel,
⋆ Idir is the irradiance directly coming from the sun,
⋆ Idif is the irradiance scattered by the atmosphere,
⋆ Icoup is the irradiance coming from the coupling between the ground and the atmosphere,
⋆ Irefl is the irradiance coming from neighbouring 3D structures.

In section 2.1, we neglect the contributions of Icoup and Irefl to derive eq. 1.

A.2 LATENT VARIABLES MODELING

An intuitive interpretation of zA is the abundance of different subclasses within a land cover class.
Therefore, we model zA prior and posterior with Dirichlet distributions. We model zP prior and pos-
terior with Beta distributions for their flexibility and domain bounded between 0 and 1. Specifically,
we define the priors as follows:

p(zP ) := Beta(zP |αo, βo); p(zA) := Dir(zA|γo) (6)

We empirically set αo to 1 and βo = 1−cos Θcode

cos Θcode+ϵ
αo where ϵ is a small constant to avoid division by

zero. This prior distribution favors high values of zP while Ep(zP )zP = cos Θcode, which is what
we expect on a flat ground. We set γo = [1 . . . 1]1×|zA|, which is equivalent to having a uniform
prior. We assume that y has a uniform prior and that y, zA and zP are a priori independent.

A.3 LIKELIHOOD OF P3VAE

In contrast to a standard VAE, we do not model the likelihood as a multivariate normal. Denoting
fP (fA(y,zA), zP ) as µ, we instead define the likelihood as follows:

pθ(x|y, zP , zA) :=
1

Z
N (x|µ, σ2I)︸ ︷︷ ︸

A(x)

· exp
(
− α arccos(

xTµ

∥x∥∥µ∥
)
)

︸ ︷︷ ︸
B(x)

(7)

where σ and α are hyperparameters and Z =
∫
A(x) · B(x)dx is a finite constant such that the

density integrates to one. In order to prove that Z is finite, we can first easily show that A : X −→ R
is square-integrable, as well as B : X −→ R:∫

|B(x)|2dx =

∫
[0,1]B

exp
(
− 2α arccos(

xTµ

∥x∥∥µ∥
)
)
dx ≤

∫
[0,1]B

dx = 1 (8)

Moreover, A and B being continous over X , the Cauchy-Schwarz inequality implies that:∣∣∣∣∣
∫

A(x) · B(x)dx

∣∣∣∣∣ ≤
(∫

A(x)2dx

) 1
2
(∫

B(x)2dx

) 1
2

= C ∈ R (9)

Thus, Z ∈ R and pθ(x|y, zP , zA) properly defines a probability density function.
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A.4 SIMULATED DATA

300 spectral bands with a 6.5 nm resolution and a 0.5 m ground sampling distance were simulated,
without the Earth-atmosphere coupling, using reference reflectance spectra for 5 land cover classes
shown in Fig. 5. A false-color image of the training data with its ground truth is shown on Fig.
4. Approximately 10, 000 test spectra were analytically generated from the reference spectra with
exhaustive irradiance conditions.

(a) (b) (c)

Figure 4: (a) False color composition of the simulated hyperspectral image and its (b) labeled train-
ing and (c) unlabeled training ground truths.

(a) Vegetation (b) Sheet Metal (c) Sandy Loam (d) Tile (e) Asphalt

Figure 5: Reference spectra used for the DART simulation

A.5 REAL DATA

Real hyperspectral data was acquired with a AisaFENIX 1K camera, which covers the spectral range
from 0.4 µm to 2.5 µm with a 1 m ground sampling distance. Data was converted in radiance at air-
craft level through radiometric and geometric corrections (Roupioz et al., 2023). Then, the radiance
image was converted to surface reflectance with the atmospheric correction algorithm COCHISE
(Miesch et al., 2005). Random labeled spectra are shown in Fig. 7.

A.6 ADDITIONAL LAND COVER MAPS

Vegetation
in the shade

Asphalt in
the shade

(a) (b) (c) (d)

Figure 6: (a) RGB composition of a real test hyperspectral scene composed of ground vegetation in
the shadows of trees (b) VAE land cover predictions (c) p3VAE land cover predictions (d) p3VAE
zP predictions.
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(d) Painted sheet metal

Figure 7: Random spectra from the (left) labeled, (middle) unlabeled and (right) test real data sets
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Figure 7: Random spectra from the (left) labeled, (middle) unlabeled and (right) test real data sets
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