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ABSTRACT

Wildfire forecasting is notoriously hard due to the complex interplay of different
factors such as weather conditions, vegetation types and human activities. Deep
learning models show promise in dealing with this complexity by learning directly
from data. However, to inform critical decision making, we argue that we need
models that are right for the right reasons; that is, the implicit rules learned should
be grounded by the underlying processes driving wildfires. In that direction, we
propose integrating causality with Graph Neural Networks (GNNs) that explic-
itly model the causal mechanism among complex variables via graph learning.
The causal adjacency matrix considers the synergistic effect among variables and
removes the spurious links from highly correlated impacts. Our methodology’s
effectiveness is demonstrated through superior performance forecasting wildfire
patterns in the European boreal and mediterranean biome. The gain is especially
prominent in a highly imbalanced dataset, showcasing an enhanced robustness
of the model to adapt to regime shifts in functional relationships. Furthermore,
SHAP values from our trained model further enhance our understanding of the
model’s inner workings.

1 INTRODUCTION

Wildfires present considerable risks to human safety and economic stability in affected regions and
wildlife habitats. The risk is inflated by climate change, which aggravates wildfires, particularly in
the vulnerable european ecosystems that this study targets (Batllori et al., 2013). Accurately pre-
dicting the highly favorable conditions for a wildfire is vital for effective disaster prevention and
preparedness. Earth observation data is pivotal in fire danger assessment and forecasting, offering
extensive meteorological and vegetation condition information closely related to wildfire occur-
rences (Pettinari & Chuvieco, 2020). The copious amount of data available lends itself well to
sophisticated deep learning (DL) approaches (Camps-Valls et al., 2021; Reichstein et al., 2019) for
predicting wildfire danger (Prapas et al., 2021). Recent advancements have been made by taking
multiple factors as model inputs. Li et al. (2023) underscore the importance of delayed interactions
between wildfires and climate patterns in the forecasting scenarios. Kondylatos et al. (2022) identi-
fied the most critical predictors of the next day’s wildfire danger using explainable AI (xAI) meth-
ods. TeleVit (Prapas et al., 2023) incorporates different local, global variables with teleconnection
indices within a transformer-based architecture. However, these approaches do not explicitly model
the information flow within the model. Consequently, the mechanism of how the variables interact
and assist the final prediction is not considered during the model design and training procedure.

The application of causal inference in Remote Sensing enhances our understanding of processes in
the Earth system and facilitates effective interventions (Runge et al., 2023; Camps-Valls et al., 2023).
Pérez-Suay & Camps-Valls (2018) propose an asymmetry-based approach that uses sensitivity cri-
terion to address the causal direction between geoscientific variables. State-space method CCM
(Tsonis et al., 2018) finds its applications in Ecosystem (Sugihara et al., 2012), land-atmosphere
interactions (Wang et al., 2018; Dı́az et al., 2022), and identifying influencing factors in urban soil
pollutants (Gao et al., 2023). Integrating causal inference with DL architectures remains challenging
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Figure 1: Workflow of our proposed Causal-GNN. The inputs contain local and OCI variables with various
temporal and spatial scales. The adjacency matrix captures the causal relationship among variables. The node
feature is extracted by the temporal module and updated via GNNs for the final prediction. The cross-entropy
between the prediction and ground truth is minimized.

due to the gap between the low-level inputs (e.g. images or earth observation data) and high-level
definitions of graphic nodes. ANM (Zhang & Hyvarinen, 2012) uses Multi-layer Perceptions to es-
timate the nonlinear causal effects between variables. Iglesias-Suarez et al. (2023) propose a Causal
Neural Network (NN) to improve climate projection. However, most efforts are limited to feature
selection and observational data regression.

Intricate causal relationship modeling among variables can support robust and reliable DL
(Schölkopf et al., 2021; Varando et al., 2021). In this work, we incorporate a causality graph into
the GNN architecture, thereby capturing the information flow through graph learning techniques.
Our experimental results reveal that the causality-infused graph is a robust indicator of pertinent
information, enhancing prediction quality. The SHapley Additive exPlanations (SHAP) (Lundberg
& Lee, 2017) values derived from our model reveal the memory effect of teleconnections in driving
the wildfire danger.

2 METHODS

In the Earth system, Synergistic Effects (Runge et al., 2019a) are the combined effects of drivers
making an impact that is greater than the simple sum of its parts. For instance, devastating wildfires
are often related to dryness conditions, combustible materials, and an ignition source, but their
impacts are subjected to threshold behavior (Reichstein et al., 2013). Causal methods allow us
to identify regime shifts in functional relationships triggered by extreme conditions (Runge et al.,
2019a). We consider leveraging the causal graph and the message passing of a temporal GNN to
capture the wildfire dynamics.

Given an input of local scale variables Xl ∈ RB×Cl×Ll and Oceanic and Climatic Indices (OCIs)
variables Xoci ∈ RB×Coci×Loci , where B is the batch size, C is the number of variables, and L is
the time lag to the current time step t, our task is to predict the wildfire danger Y ⊂ {0, 1} ∈ RB in
the future time step t+ h, where h is the forecasting horizon.

GNNs extend DL to data with a graph structure. The two key components of GNNs are the adjacency
matrix and node features. Given that causality is usually represented with graphs (Runge et al.,
2019b), we create this adjacency matrix A ∈ R(Cl+Coci)×(Cl+Coci) from a causal graph. The
strength of the causal link quantifies weights of A. The causal graph is the graphic representation
of the causal relationship among the variables. Our selection algorithm to compute the causal graph
is the PCMCI method (Runge et al., 2019b). The nodes in the time series causal graph represent
the variables Xj

t at different lag times, and Pa(Xj
t ) ∈ X−

t = Xt−1,Xt−2, ... denotes the causal
parents of variable Xj

t . A causal link Xi
t−τ → Xj

t exits if Xi
t−τ ∈ Pa(Xj

t ). Multiple factors,
such as a temporal trend, geographical shifts, and vegetation type, can introduce non-stationary
dependencies that act as confounders. Thus, the data is preprocessed to ensure the causal stationarity.
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The preprocessing is detailed in Appendix B.1. However, due to finite sample length and partially
unfulfilled standard assumptions of causal discovery (Pearl, 2009; Spirtes et al., 2001), spurious
links can still exist (Krich et al., 2020). To validate the findings with domain knowledge, we employ
link assumptions (Appendix B.2) to orient parts of the edges.

Regarding the vertices in GNN, each node represents the temporal feature of the given variable,
which is extracted by a single layer LSTM (Hochreiter & Schmidhuber, 1997). The node feature
is updated by message transmission among neighboring nodes whose connectivity is defined within
the adjacency matrix. The node feature is refined via multiple convolution layers with layer norm
and activation. The graph pooling at the last layer of GNN gathers the global information from the
whole graph. The details of the model are in Appendix A. The architecture is shown in Fig.1.

3 EXPERIMENTS

The dataset used is the SeasFire Datacube (Karasante et al., 2023), a global dataset spanning 21
years, featuring an 8-day temporal and 0.25 deg spatial resolution, containing crucial information
on seasonal wildfire drivers, targets, and masks. We select three local weather variables Temperature
at 2 meters - Mean (T2m), Total precipitation (TP), Vapor Pressure Deficit (VPD), and three Oceanic
Climate Indices (OCIs) known to influence the test area, including North Atlantic Oscillation (NAO),
Arctic Oscillation Index (AO) (Müller-Plath et al., 2022), and Nino 3.4 Anomaly (Nino34 anom)
(Brönnimann, 2007). The time lag is 10 months for OCIs and 39 × 8 days for local variables. The
target variable is a binary map of the burned areas. Additionally, we narrow the spatial coverage
to Europe and test two cases with biome types “Mediterranean” and “Boreal” according to the
static features of GFED regions and biomes. The causal graph contains seven nodes with the target
variable included. The A masks out edges and nodes related to the target variable to avoid label
leakage. The NNs use 2003 to 2015 data for training, 2016 to 2017 for validation, and 2018 to 2019
for testing. We compare our proposed model to the following baselines: 1) Long short-term memory
(LSTM) (Hochreiter & Schmidhuber, 1997). 2) Gated recurrent units (GRUs) (Cho et al., 2014). 3)
GNN CORR uses the correlation coefficient (CC)-based adjacency matrix computed from temporal
features of variables. 4) GNN FULL uses a fully connected graph as the adjacency matrix. The
model’s performance is evaluated using the Area Under the Precision-Recall Curve (AUPRC) and
the Area Under the Receiver Operating Characteristic Curve (AUROC). We test models’ forecasting
performance eight days in advance in the Mediterranean, and 1, 2, 8 × eight days in Boreal to
explore their long-term capacity.

4 RESULTS AND ANALYSIS

The model performance at the forecasting horizon of 8 days in the Mediterranean is listed in Table
1. The baseline AUPRC achieved by a Random classifier equals the fraction of positives (Saito &
Rehmsmeier, 2015) in the dataset, which is around 1.1%. The causal GNN shows competitive per-
formance with common time-series classification methods and improved performance over a fully
connected and CC-based graph. This highlights the importance of removing spurious links during
GNN training, where the redundant edges can lead to over-smoothed node features and degraded
prediction accuracy. The prediction map Fig.2b, essentially looks like a fire danger map as in simi-
lar studies which approach fire danger forecasting as a classification task. It matches well the target
burned areas in a given 8-day period of summer 2019, which is part of the test set. The model

Model AUPRC (%) ↑ AUROC (%) ↑
Random classifier 1.1 50.0
LSTM 32.9 91.9
GRU 34.6 91.6
GNN CORR 30.5 92.1
GNN FULL 29.1 90.8
GNN CAUSAL (Proposed) 34.6 92.4

Table 1: AUPRC and AUROC performance of the different models for h = 8 days in Mediterranean.

performance at different prediction horizons in Boreal is shown in Fig.2a. The proportion of posi-
tive samples in this area is 0.0737%, a much more challenging case for all DL models. Our model
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achieves the best AUPRC at the short horizon. However, with the increasing horizons, the per-
formance of Causal-GNN deteriorates with the rest of the models. The model’s limited long-term
forecasting capacity may be attributed to its static causal graph. Incorporating time-series graphs to
account for time lags could potentially mitigate this issue.

(a) (b)

Figure 2: (a) AUPRC performance of the different models at forecasting horizon of 8, 16, 64 days in Boreal.
(b) Causal-GNN predicted the sample fire danger map at eight days lead forecasting time in the Mediterranean.

Understanding the choice of Causal-GNN helps to refine the model and verify its physical consis-
tency. Thus, we conduct SHAP analysis on positive test samples in the Mediterranean. From Fig.3a,
we notice that high temperatures increase wildfire danger. In areas where the VPD is low (<0.7), the
drier conditions correlate with an increased likelihood of wildfire. This relationship inverts while at
the high VPD (>0.7) part. Figure 3b is the absolute SHAP value of OCIs at various lags averaged
over samples. The increased value on large lags signifies the memory effects of large-scale atmo-
spheric circulation patterns in driving future wildfires. For example, El Niño intensifies the wildfire
danger, especially six to ten months in advance.

(a) SHAP value w.r.t local feature values.

(b) Scaled absolute SHAP value of OCIs with changing
lags.

Figure 3: (a) Square (cross) markers are True Positive (False Negative) samples. Positive (negative) SHAP
value contributes to higher (lower) fire danger. (b) The warmer color shows a higher impact on the prediction.

5 CONCLUSION

This work proposes a DL framework that integrates the causal structure into the GNN training. The
causal structure reveals the intricate interplay among variables and the temporal GNN, which takes
the temporal feature of variables as nodes and weighted causal graph as connectivity, promoting the
information exchange between variables that simulate both regional and larger-scale earth system
dynamics. The evaluation of two cases with different vulnerable forest types shows promising re-
sults, especially when the dataset is highly imbalanced, indicating the robustness brought by causal
knowledge. The gain over the CC-based method shows its efficacy in considering the synergistic
effect and spurious link removal. xAI reveals the physically-consistent dependencies in the learned
model. Our method paves the way to enhance process understanding and model trustworthiness.
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Future efforts will focus on developing learnable causal graphs and examining the global variabil-
ity. Additionally, we plan to explore regression of the burned area, with the goal to improve our
understanding of different wildfire types and especially extreme events.
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A MODEL DETAILS AND HYPERPARAMETERS

The samples in the training and validation set are resampled so that the ratio of the number of
negative samples (No fire) to positive samples (Fire) is 5 to 1. All learning rates are set as 1e-5 with
a weight decay of 5e-6. Model weights are initialized using Xavier normalization. In the Causal-
GNN, the temporal features of each input variable (channel-wise) are extracted by a single LSTM
layer with the hidden state of dimension 256. The adjacency matrix is normalized to stabilize the
graph learning. The temporal node feature is updated by a two-layer convolutional neural network
with kernels K ∈ R256×512×1×1 and R512×256×1×1, following LayerNorm and LeakyReLU. The
Graph Pooling averages node features, leading to the final classification layer. This is a single linear
layer with dimensions (256 and 2) for binary classification tasks. Confidence is determined by the
softmax function of the positive prediction, and it is used to visualize the fire danger map in Fig.2b.

For the baselines, LSTM and GRUs project the input feature to a dimension of 256. We utilize an
adjacency matrix A for the fully connected graph, wherein all elements are set to 1, indicating com-
plete connectivity. The correlation coefficient-based graph employs PyTorch’s corrcoef function to
calculate the similarity among variables within the temporal feature space. All performance scores
are reported as the mean of three runs with different seeds.

B CAUSAL DISCOVERY

B.1 CAUSAL STATIONARITY

To prepare for the spatial-temporal stationary dataset, the input local variables are resampled to one-
month intervals, and their mean is removed from the inputs. We test two cases over the Europe area,
which are located between 25◦N - 75◦N, 13◦W - 45◦E. We use the biomes 3.0 area and biomes 9.0
area of the gfed region 6.0 (EURO) to consider the fuel types of Europe’s Mediterranean and Boreal
biomes. Their geographical extension is shown in Fig.4.

Figure 4: Test biomes in EURO region.

B.2 LINK ASSUMPTION

For the time series, we assume time order, the causal Markov condition, faithfulness, causal suffi-
ciency, causal stationarity, and no contemporary causal effects (Runge et al., 2019b).

The link order is depicted in Fig.5.

B.3 CAUSAL GRAPHS

We compute causal graphs using PCMCI based on data from 2001 to 2019. The conditional inde-
pendence test used is the one that accounts for partial correlations (ParCorr). The maximum time
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Figure 5: Causal order in PCMCI ParCorr independence test. The local weather includes tempera-
ture, total precipitation, and vapor pressure variables. The OCIs are the Arctic Oscillation, the North
Atlantic Oscillation, and El-Niño in the 3.4 region. Here, the local weather acts as a mediator vari-
able, explaining the relationship between an independent variable (OCIs) and a dependent variable
(burned areas).

delay τmax is six months. Significance level α at 0.05 is used to threshold the estimated matrix of
p-values to get the graph. The derived causal graphs are shown in Fig.6.

Figure 6: Causal graphs over Europe’s Boreal and Mediterranean biomes. The color of the lines
(MCI) of the causal links shows the strength of the relationship (positive for reds and negative for
blues). The numbers in the arrows show their lagged relationship in months, if missing then the
relationship is contemporaneous (lag 0). The arrows show the directionality, if any. The color of the
nodes (auto-MCI) shows the autocorrelation of each variable with the time series.
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