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ABSTRACT

Earth observation (EO) applications involving complex and heterogeneous data
sources are commonly approached with machine learning models. However, there
is a common assumption that data sources will be persistently available. Different
situations could affect the availability of EO sources, like noise, clouds, or satellite
mission failures. In this work, we assess the impact of missing temporal and
static EO sources in trained models across two datasets involving classification
and regression tasks. We compare the predictive quality of different methods and
find that some are naturally more robust to missing data. The Ensemble strategy, in
particular, achieves a prediction robustness up to 99%. We evidence that missing
scenarios are more challenging in regression than classification task. Finally, we
find that the optical view is the most critical view when it is missing individually.

1 INTRODUCTION

Many data-driven solutions in Earth Observation (EO) leverage data from multiple data sources
(Garnot et al., 2022; Mena et al., 2024). The objective is to corroborate and complement the in-
formation on individual observations for the particular task. The literature provides evidence that
the inclusion of additional data, such as Remote Sensing (RS) based, is crucial to enrich the mod-
eling and improve the predictive quality (Garnot et al., 2022; Hong et al., 2020; Mena et al., 2023).
However, the assumption that EO sources are persistently available may not hold.

There are different situations in which EO data sources may not be available. Specific RS instru-
ments have a finite lifetime (e.g. based on the fuel usage), and may be affected by noise (Hong et al.,
2020) or clouds in the case of optical sensors (Garnot et al., 2022). Besides, unexpected errors can
terminate the operation earlier, such as the failure of the Sentinel-1B satellite in 2021.

Despite the research focus on more complex Multi-View Learning (MVL) models (Mena et al.,
2024), few works have explored the challenge of missing views. Here, we refer to a view as a data
source, and a missing view as missing an entire data source. Srivastava et al. (2019) proposed a
technique to retrieve a similar sample when one view is missing. Hong et al. (2020) showed that the
predictions of specific MVL models worsen less when views are missing. Gawlikowski et al. (2023)
showed that a missing optical view affects the predictions more than a missing radar view.

Unlike recent works, we present a study on datasets involving time series and static EO sources. Our
research question is: what is the impact of missing views in trained MVL models? The prediction
robustness results allow us to formulate advice on model selection based on the task type and input
views. Furthermore, this study can serve as a way to understand the impact of specific views in
trained models, as well as the sensitivity of these models to missing data.

2 MULTI-VIEW LEARNING AND MISSING VIEWS

A MVL setting consists of having multiple views as input data to a machine learning model to
improve predictive quality (Mena et al., 2024). A view can be any set of features expressing a
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Table 1: Datasets description. The last column is the spatial resolution of the target pixel.

Dataset Task Samples Years Where Pixel
CH-M Tseng et al. (2021) Multi-class classification 29642 2016-2022 Global 10 m
LFMC Rao et al. (2020) Regression 2578 2015-2019 USA 250 m

different perspective of each sample, such as entire data sources, optical or radar images, vegetation
indices, terrain information or metadata.

Several works in the literature have explored MVL models with neural networks to achieve an op-
timal data fusion (Garnot et al., 2022; Mena et al., 2023). Some standard MVL models use Input,
Feature, or Decision fusion strategies, where the name suggests where the fusion is placed in the
model architecture (first, middle, or last layer respectively). Additionally, in the Ensemble strategy
(Mena et al., 2023), the predictions from view-dedicated models (previously trained) are aggregated.

During inference, the occurrence of missing views can be seen as a special case of domain shift
(Gawlikowski et al., 2023). By lacking views, the input data deviates from the training distribution,
leading to a scenario for which the model is unprepared. However, there are some techniques applied
to trained models that can mitigate this effect, which we describe below.

Impute. A straightforward technique is to fill in the missing views Hong et al. (2020). However,
since the entire data source is missing, there are no available features for interpolation or in-painting
techniques. Therefore, we use the average of each view in the training data as the imputation value,
as it brings more information than an arbitrary value (e.g. null).

Exemplar. Based on information retrieval, the missing view can be replaced with a similar sample
via a training-set lookup. We consider the technique in Srivastava et al. (2019) that searches for
the missing view using the available views in a shared space. The space is obtained with a linear
projection (via CCA) from features learned by a separated MVL model.

Ignore. Some MVL models are adapted naturally to missing views by a dynamic fusion. In the
Ensemble strategy, the predictions of the view-dedicated model associated to the missing view are
omitted in the aggregation. Similarly, with Feature fusion, the features of the missing views are
ignored when using the average as the merge function.

3 EVALUATION

3.1 DATASETS

In the following we describe two datasets used in this study, while the Table 1 presents an overview.

CropHarvest Multi-crop (CH-M): We use a multi-crop version of the CropHarvest data for multi-
view crop recognition Tseng et al. (2021). This is a classification task in which a given location
during a particular season has to be classified among 10 crop-type groups. The input views are
optical (from S2), radar (from S1), and weather time series. These temporal views were re-sampled
monthly for 1 year. An additional static view is the topographic information.

Live Fuel Moisture Content (LFMC): We use a dataset for multi-view moisture content estimation
Rao et al. (2020). This is a regression task in which the vegetation water per dry biomass (in per-
centage) in a given location at a specific moment is predicted. The input views are optical (from L8)
and radar (from S1) time series. These views were re-sampled monthly along 4 months. Additional
static views are the topographic information, soil features, canopy height, and land-cover class.

3.2 EXPERIMENT SETTINGS

We apply a z-score normalization to the input data. The categorical and ordinal views (land-cover
and canopy height) are one-hot-vector encoded. We use an MLP as the encoder for the static views.
For the temporal views, we use a 1D CNN encoder in the CH-M, and a GRU in the LFMC. We use
two layers with 128 dimensions in the encoders, and an MLP with one hidden layer as prediction
head. An ADAM optimizer is used with batch-size 128 and early stopping. The loss function is
cross-entropy in classification and mean squared error in regression task.

2



ICLR 2024 Machine Learning for Remote Sensing (ML4RS) Workshop

Table 2: Predictive quality (AA) of MVL models for different missing views scenarios in the CH-M.
Columns to the right have more missing views. We highlight the best and second best value.

Method Technique No Miss Radar Optical Weather +
static

Radar+weather
+ static

Optical +
weather+static

Input-concat Impute 0.738 0.641 0.296 0.534 0.534 0.142
Feature-concat Impute 0.727 0.624 0.290 0.558 0.390 0.159
Feature-cca Exemplar 0.727 0.285 0.384 0.094 0.107 0.100
Feature-avg Ignore 0.726 0.674 0.542 0.582 0.529 0.306
Ensemble-avg Ignore 0.715 0.708 0.613 0.711 0.715 0.523

Table 3: Predictive quality (R2) of MVL models for different missing views scenarios in the LFMC.
Columns to the right have more missing views. † is a value lower than −100. We highlight the best
and second best value.

Method Technique No Miss Radar Optical Static Radar+static Optical+static
Input-concat Impute 0.717 0.650 0.060 0.185 0.165 −0.047
Feature-concat Impute 0.667 0.599 0.274 0.352 0.290 0.081
Feature-cca Exemplar 0.667 † −0.260 † † †
Feature-avg Ignore 0.683 0.618 0.142 † † †
Ensemble-avg Ignore 0.312 0.292 0.243 0.407 0.392 0.239

We evaluate using the 10-fold cross-validation. The predictive quality is measured with the Average
Accuracy (AA) in classification, and the coefficient of determination (R2) in regression. We include
the Performance Robustness Score (PRS) presented by Heinrich et al. (2023) that is based on the
error in the predictions with missing views relative to the same error when all views are available.

The missing views scenario consists of making predictions on the validation fold with fewer views
available than during training. We experiment with a moderate degree of missingness, as the case
when only radar is missing, or when optical is missing; an intermediate missingness, when all other
views except radar and optical are missing; and an extreme degree of missingness, when all the
views are missing except one (single-view inference with only radar or optical). We compare the
techniques described in Sec. 2. Two MVL models with the Impute technique: Input and Feature with
concatenation (Input-concat, Feature-concat). Two MVL models with ignoring techniques: Feature
and Ensemble with averaging (Feature-avg, Ensemble-avg). Lastly, one MVL model based on the
Feature fusion with the Exemplar technique (Feature-cca), see Sec. 2 for details.

3.3 EXPERIMENT RESULTS

In Table 2 we show the predictive quality in the classification task. The results of the Input-concat
method decreases significantly when views are missing. We observe that, when using Feature fusion
with ignoring techniques (Feature-avg) the impact of missing views is mitigated more than with the
Impute or Exemplar (Feature-concat, Feature-cca). However, these do not achieve the values of the
Ensemble-avg, which is the method least affected by missing views.

We observe similar results in the regression task, shown in Table 3, except when using the Ig-
nore technique. The predictions of Feature fusion-based models with the ignore techniques become
worse, up to negative R2 values, when views are missing. Besides, the results of the Ensemble-avg
method in the LFMC data is relatively bad (≈ 0.3) with no or a moderate degree of missing views.

For the robustness results in Fig. 1, we corroborate the lower impact of missing views in the MVL
models when using ignoring techniques. The Ensemble-avg method got a PRS close to one in some
cases, which means that the error of predictions with missing views is lower or the same as the error
in predictions without missing views. However, this is on average, as there can still be negative
changes in the predictive quality, such as when radar is missing in the CH-M data (Table 2), or a bad
predictive quality in itself, such as in the LFMC data (Table 3). We notice that the Feature-concat
method has higher robustness than Feature-avg in regression. Besides, the Feature-cca method has
a fairly low robustness, especially in the regression task, reaching a PRS of 0 in some scenarios.

Overall, we note that the impact of missing views depends on the MVL model along with how to treat
missing views, as previous works have shown (Hong et al., 2020; Garnot et al., 2022; Gawlikowski
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(a) Classification in the CH-M data.
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(b) Regression in the LFMC data.

Figure 1: Prediction robustness of MVL models for different missing views scenarios.

et al., 2023). The negative effect of missing view increases from the moderate, intermediate to the
extreme degree. In addition, we observe that the impact of missing optical view is stronger than
when missing radar. This means that the optical view is more difficult to supplement than others,
reflecting its greater importance for RS-based applications. Ancillary data, like static and weather
views, still provide valuable information to MVL models. For instance, the predictive quality of
some methods in the LFMC data is worse when the static views are missing, and, in CH-M, some
are worse when weather and static views are missing compared to the radar view.

In Table 4 we present our ongoing work where we modify the training by applying a sensor dropout
technique, i.e. we randomly drop some EO sources in each batch. Comparing the results with
Table 2, we observe that when there are no missing views, the results decrease. However, for the
missing view scenarios, the predictive quality increases significantly. This highlights the potential
of techniques that explicit modify the model learning to increase the prediction robustness.

Table 4: AA of MVL models with sensor dropout for different missing views scenarios in CH-M.

Method Technique No Miss Radar Optical Weather +
static

Radar+weather
+ static

Optical +
weather+static

Input-concat Impute 0.687 0.665 0.508 0.683 0.655 0.277
Feature-concat Impute 0.659 0.612 0.510 0.591 0.515 0.292
Feature-avg Ignore 0.731 0.705 0.610 0.720 0.698 0.455

Table 5: R2 of MVL models with sensor dropout for different missing views scenarios in the LFMC.

Method Technique No Miss Radar Optical Static Radar+static Optical+static
Input-concat Impute 0.539 0.543 0.335 0.337 0.299 0.108
Feature-concat Impute 0.469 0.447 0.272 0.344 0.273 0.094
Feature-avg Ignore 0.507 0.474 0.289 −1.173 −21.061 −9.590

4 CONCLUSION

We evaluated the impact of missing views in MVL models across two tasks with time series and
static EO data. We showed that missing specific views (such as optical) significantly affects the
predictive quality. Nevertheless, the prediction robustness can be improved by designing a method
adjustable for the missing views. In addition, due to the differences in predicting a continuous value
to a categorical one, the impact of missing views is more severe in regression than in classification
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tasks. Based on the results, we provide the following advice for model selection in missing view
scenarios: if views are sufficiently discriminative to allow individual predictions of the task, use the
Ensemble strategy that ignores the missing predictions, otherwise use the Feature fusion strategy
ignoring missing views in classification, or imputing missing views in regression tasks.
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