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ABSTRACT

We propose a new tiling strategy, Flip-n-Slide, which has been developed for
specific use with large Earth observation satellite images when the location of
objects-of-interest (OoI) is unknown and spatial context can be necessary for class
disambiguation. Flip-n-Slide is a concise and minimalistic approach that allows
OoI to be represented at multiple tile positions and orientations. This strategy
introduces multiple views of spatio-contextual information, without introducing
redundancies into the training set. By maintaining distinct transformation permu-
tations for each tile overlap, we enhance the generalizability of the training set
without misrepresenting the true data distribution. Our experiments validate the
effectiveness of Flip-n-Slide in the task of semantic segmentation, a necessary data
product in geophysical studies. We find that Flip-n-Slide outperforms the previous
state-of-the-art augmentation routines for tiled data in all evaluation metrics. For
underrepresented classes, Flip-n-Slide increases precision by as much as 15.8%.

1 INTRODUCTION

The volume of geospatial satellite imagery has grown rapidly in the past decade. Semantic segmen-
tation presents a promising opportunity for rapidly parsing meaningful scientific understanding from
these images. Despite the remarkable accomplishments of deep neural networks for such segmenta-
tion tasks (Ronneberger et al., 2015; Chen et al., 2019; Tan et al., 2020; Amara et al., 2022), these
methods can underperform on data that have noisy or underrepresented labels (Shin et al., 2011;
Guo et al., 2019) or when one set of data representations is used for a wider set of downstream tasks
(Yang et al., 2018). These are common challenges in Earth observation imagery. To overcome these
issues, data augmentation is a widely adopted technique for generalizing a model fit to make better
predictions by expanding the size and distribution of training data through a set of transformations
(Van Dyk & Meng, 2001; Hestness et al., 2017). In recent years, much focus has been given to
upstream augmentation methods that address overfitting through data mixing (Zhang et al., 2017;
Yun et al., 2019; Hong et al., 2021; Dabouei et al., 2021) or proxy-free augmentations (Cubuk et al.,
2019; 2020; Reed et al., 2021; Li & Li, 2023)—strategic approaches that expand the training data,
but also execute unrealistic data transformations. Furthermore, limited attention has been given to
investigating upstream augmentation techniques in the realm of learning on tiled imagery, an ap-
proach often employed to parse large images into smaller tiles to overcome the intractable size of
the overall image for the GPU memory (Pinckaers & Litjens, 2018; Huang et al., 2019).

Tiling techniques in scientific applications require intentional augmentation choices, as certain trans-
formations are unphysical and therefore not useful to learn. Spatial context is needed to disam-
biguate between classes with similar channel outputs and surface textures (Pereira & dos Santos,
2021). This is particularly true in scientific use-cases where tasks like classification are employed
to answer wider questions about rare or relatively unknown phenomena. Although most machine
learning methods demonstrate robust performance with well-represented phenomena, this perfor-
mance degrades when training data fails to accurately capture poorly represented features or the
structure of the problem. Human experts are better able to identify rare and unknown phenomena
by relying on domain context, such as the semantic or temporal proximity of other classes (Wang &
Zhu, 2023); it stands to reason that machines could similarly use context for similar purposes.
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Figure 1: Flip-n-Slide’s tile overlap strategy creates eight overlapping tiles for any image region
more than a 75% tile threshold away from the overall image edge. Three tiling strategies, shown
in false color to illustrate overlap, are visualized here. a) Tiles do not overlap. b) The conventional
tile overlap strategy, shown at the recommended 50% overlap. c) Flip-n-Slide includes more tile
overlaps, capturing more OoI tile position views for the training set.

To maintain access to context after tiling, the current state-of-the art employs tiling as a sliding
window data augmentation, overlapping tiles by a significant percentage to extend dataset size and
expose the model to multiple contextual views (Ronneberger et al., 2015; Ünel et al., 2019; Zeng
& Zheng, 2019; Akyon et al., 2022) at training time, at test time, or during both. However, when
applied upstream, this approach leads to redundancies within the training set, as many pixel windows
are repeated more than once; for objects-of-interest (OoI) that are the size of the window slide,
spatial context is limited beyond the singular sliding parameter (Zeng & Zheng, 2019; Reina et al.,
2020). This leads to the question: How can we best tile and augment large images with limited
physically realistic transformations without losing important spatio-contextual information in
the tiling process? Further: Can we achieve this without creating the redundancies that occur
in simply overlapping tiles?

To answer this question, we propose a concise augmentation strategy, Flip-n-Slide, built for use with
large Earth observation images where: 1) tiling is necessary; 2) data transformations must be limited
to rotations and reflections to be realistic; and 3) there is no prior knowledge of the pixel locations
for which spatial context will be necessary. We argue that physically realistic transformations of the
data can be implemented alongside the tiling overlap process, thereby removing redundancies when
training convolutional neural networks (CNNs), in which orientation matters for learning (Ghosh
et al., 2018; Szeliski, 2022). Our strategy allows us to create a larger set of samples without the
superfluity of simply overlapping the tiles, enhancing downstream generalization. To achieve our
goal, we slide through multiple overlap thresholds of the tiling window, exposing the model to more
contextual views of each location (Figure 1), and distinctly permute any overlapping windows to
eliminate redundancy with other tiles that share pixels. We run segmentation experiments using
our routine on the Land Cover of Canada (LCC) dataset (Latifovic, 2020) to classify Landsat 8
satellite imagery (Earth Resources Observation And Science (EROS) Center, 2013; Roy et al., 2014).
Our findings demonstrate that our strategy improves the segmentation performance of tiled data,
especially for underrepresented classes, when compared to the conventional method (Figure 2c).

2 TILING AND AUGMENTATION METHOD

We present the Flip-n-Slide algorithm, a data preprocessing strategy that tiles a large input image
using a sliding window, providing eight sliding overlaps for every tile. Redundancies on overlap are
eliminated using distinct, physically realistic transformations to permute each overlapping tile.

2.1 MATHEMATICAL FORMALISM FOR THE FLIP-N-SLIDE ALGORITHM

Flip-n-Slide follows a concise mathematical formulation to concurrently tile and transform a large
image. In Algorithm 1 we outline the formal process for implementing Flip-n-Slide on an input
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image, I . The algorithm is implemented in two stages. First a sliding window captures overlapping
tiles, t ∈ T , at specified boundary ranges, i × j, in the 2D image plane of I . The boundary ranges
are given in S. This operation is specified in Line 2. The tile boundaries are defined such that any
given x× y pixel location sufficiently away from the edge of the overall image I overlaps with eight
tiles. The length of i is equal to the length of j, creating a square. Each of these overlapping tiles is
permuted correspondingly from a specified set of eight distinct transformations, F . This operation is
specified in Line 3. As augmentation is implemented concurrently with tiling, Flip-n-Slide must be
implemented before the data streaming stage. This results in the constraint of CPU storage capacity
required to accommodate the complete extended dataset. The overlap and transformation choices
are explained in greater detail in Section 2.2. We release this algorithm as a versioned, documented,
open-source Python package named flipnslide, available on PyPI and GitHub.

2.2 HYPERPARAMETER SELECTION FOR TILING AND TRANSFORMATION

We justify the fixed parameter choices for Flip-n-Slide to meet the goal of preserving spatial context
for OoI, while eliminating informational redundancies that have been introduced in past tiling
strategies. Our approach has the added benefit of expanding the initial training distribution with
physically realistic transformations, adding further downstream generalization to the model fit.

Tile Size: Similar to past methods (Ronneberger et al., 2015; Ünel et al., 2019), Flip-n-Slide em-
ploys a fixed tile size to enable ease-of-scale when processing petapixel datasets. The algorithmic
method is independent of tile size as needs will vary depending on the size of OoI, allowing users
to pick a size that is most appropriate for a specific use-case. However, we limit the algorithm to
square tiles to make the data more efficient for use with CNNs.
Tile Overlap : Previous methods employ a single overlap threshold, generally recommended
to be 50%. Flip-n-Slide uses a strategy with multiple overlap thresholds, where a tile window
slides along to capture a 0%, 25%, 50%, and 75% threshold on both spatial axes, leading to
eight overlaps for any given x × y area that is more than a 75% tile threshold away from the
edge of the original large image. This method provides the model with multiple tile views of
contextual information for OoI, leading to greater downstream tile-position-invariance. Addi-
tionally, this method reduces the overhead present in dynamic methods by removing the need for
an upstream check that small objects are not sliced during augmentation; in Flip-n-Slide sliced
objects that are smaller than the tile size will have unsliced representations in other overlapping tiles.
Transformation Permutations : Rotations and reflections provide alternative views of spatial rela-
tionships to the convolutional kernel in CNNs (Van Dyk & Meng, 2001). For each of the eight tile
overlaps, Flip-n-Slide employs a distinct rotation and/or reflection transformation from the follow-
ing set of permutations {0°, 90°, 180°, 270°, (0°,→), (0°, ↑), (90°,→), (90°, ↑)}, shown in Figure
4. This set avoids commutative and indistinct transformation compositions to reduce redundancies
for tiles that overlap in some way on the same initial image position. Additionally, it is limited to
physically realistic transformations of the original image bypassing any pixel-level effects that can
be introduced when rotating square matrices to angles indivisible by 90°.

3 EXPERIMENTAL SETUP

We evaluate our strategy’s performance on a classification task with a benchmarked semantic seg-
mentation approach and compare it with the current recommended tiling convention as a control.
Across all experiments, we argue that our augmentation strategy exposes the model to enough se-
mantic context to remove the need for augmentation and label averaging at training time. To test
this hypothesis, we only tile the test image and do not add any further augmentations at test time.

We perform our experiment on data from Ellesmere Island in the Canadian Arctic to ensure that our
tiling strategy performs well on datasets in wilderness regions, which are an understudied focus of
inquiry in established machine learning datasets, (Figure 2a). We use land cover classifications from
the publicly available Land Cover of Canada (LCC) dataset (Latifovic, 2020) and the corresponding
images from NASA’s Landsat 8 imagery (Earth Resources Observation And Science (EROS) Center,
2013; Roy et al., 2014) since the LCC was derived from Landsat images. The data are classified by
seven labeled classes (Snow & Ice [39.36% of the overall dataset], Barren Rock [33.57%], Water
[17.98%], Polar Moss & Lichen [4.97%], Polar Grassland [4.23%], Urban Development [0.0003%],

3

https://pypi.org/project/flipnslide/
https://github.com/elliesch/flipnslide


ICLR 2024 Machine Learning for Remote Sensing (ML4RS) Workshop

0 25 75 km
N

W

a) b)

c)

Sn
ow

 &
 Ic

e
O

ve
rr

ep
re

se
nt

ed
Li

ch
en

 &
 M

os
s

U
nd

er
re

pr
es

en
te

d

Image Tile Ground Truth Flip-n-Slide 50% Overlap

39.36% Snow & Ice
33.57% Barren Rock
17.98% Water
4.97% Polar Lichen & Moss
4.23% Polar Grassland
0.0003% Urban Development
0.0001% Wetland

Figure 2: In Earth observation, classes can be extremely imbalanced as is shown here for Ellesmere
Island, Nunavut, CA. a) Labels from the Land Cover of Canada dataset (Latifovic, 2020) overlain
on the corresponding Landsat satellite imagery (Earth Resources Observation And Science (EROS)
Center, 2013). The legend shows the relative class distribution. Image tiles showing (b) an over-
represented class (snow and ice) and (c) an under-represented class (lichen and moss) with the binary
class masks from the ground truth data set, segmentation after training using the Flip-n-Slide tiling
algorithm, and segmentation after training using the conventional tiling algorithm (50% overlap).
Although both algorithms perform well for the over-represented class case, Flip-n-Slide is more
precise, by up to 15.8%, than the conventional strategy (50% tile overlap).

Wetland [0.0001%]). There is high class imbalance in this data as is common in geophysical land
cover segmentation problems, where often the OoI are among the least represented classes.

We evaluate the performance of Flip-n-Slide on a semantic segmentation task, generating 12,800
256×256 tiles from the dataset. All training experiments are conducted using the benchmarked
UNet architecture (Ronneberger et al., 2015), employed with the ADAM optimizer (Kingma & Ba,
2017) at a learning rate of 0.001 and an unweighted cross-entropy loss. We train additional models
on the two control tiling strategies to test the comparative performance, employing the same model
architecture and optimization. The models undergo 300 training epochs with a batch size of 32.

4 EXPERIMENTAL RESULTS

We follow the standard evaluation setup for semantic segmentation tasks using a UNet (Ronneberger
et al., 2015). We train a first model on tiles generated by employing the Flip-n-Slide strategy. As a
comparative control, the second model is trained on non-overlapping tiles, and the third is trained on
tiles generated using the conventional 50% overlap strategy (Ünel et al., 2019; Zeng & Zheng, 2019;
Reina et al., 2020; Akyon et al., 2022). We test all three trained models on three random draws of
non-overlapping tiles from the same geographic location, and share the performance results, aver-
aged across the tests, in Table 1. In each experiment, Flip-n-Slide improves the model performance
across all evaluation metrics when compared to conventional methods. These results position Flip-n-
Slide as an effective augmentation strategy for tiling large scientific images, particularly in use-cases
with high class-imbalance.

4.1 PERFORMANCE IMPROVEMENT FOR UNDERREPRESENTED CLASSES

Incorporating the Flip-n-Slide strategy enhances model performance on underrepresented classes,
even without tailoring the model architecture or loss function to addressing class imbalance (Ta-
ble 1). Excluding the two classes in this investigation that exhibit extreme underrepresentation
(<0.0004% of the overall data) and are therefore subject to model noise1, the next two smallest
classes each make up less than 5% of the overall dataset. Flip-n-Slide improves prediction precision
by 13%, on average, in underrepresented classes, and outperforms other approaches in every met-

1Flip-n-Slide also outperforms other tiling methods on the two extremely underrepresented classes, but the
performance improvement is within error, so we exclude those results here.
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Performance Comparison
Between Strategies

Performance On
Underrepresented Class

Evaluated on All Classes Moss & Lichen (4.97% of Data)

Method IoU Precision F1 Score mAP IoU Precision F1 Score

No Tile
Overlap 70.7% 71.7% 82.8% 71.3 42.7% 44.4% 59.9%

50%
Overlap 85.4% 87.1% % 92.1% 85.5% 58.3% 62.6% 73.6%

Flip-n-Slide
Ours 87.6% 90.1% 93.4% 87.8% 69.7% 78.4% 82.2%

Table 1: Performance results for three tiling strategies across all class predictions. Flip-n-Slide
outperforms other strategies in all metrics. Flip-n-Slide also improves performance results for un-
derrepresented classes even with a basic loss function and model architecture.

ric tested. These results highlight the improved performance for underrepresented classes, with no
changes to architecture, loss function, optimization, or any other model parameters.

Predicted masks for a withheld test set are shown for two classes in Figure 2. Although all tiling
methods succeed at predicting the boundaries for a well-represented class (Snow & Ice, 39.36% of
the data), only the model trained on Flip-n-Slide tiling reasonably estimates the underrepresented
class (Lichen & Moss, 4.97%). Flip-n-Slide achieves this without altering the underlying class dis-
tribution while providing the model with more contextual views of all classes. In CNNs, classes can
be distinguished by their channel spectrum or surface texture, but spatial context is also important
for separating between classes (Wang & Zhu, 2023). This is especially true in scientific use-cases
where the morphometry of the scene is dictated by physical processes and can aid in class separation
for rare classes. Our results confirm that the Flip-n-Slide method sufficiently generalizes a model fit
to include a fuller understanding of the training distribution, especially for underrepresented classes.

5 CONCLUSIONS

In this paper, we addressed a problem with earlier tiling augmentation strategies—namely that their
overlap strategy caused data redundancies, which ultimately reduce a model’s ability to generalize
effectively. However, tile overlapping is necessary to preserve spatial context, which is important in
segmentation tasks for Earth observation use-cases. To solve this, we argued that tile overlap when
combined with distinct permutations of the data may not only eliminate this redundancy but also
expose the model to an expanded training dataset with more spatio-contextual views for OoI. To
maintain the fidelity of this context, we emphasized the necessity of realistic augmentation choices
for use in scientific segmentation tasks. We introduced a new preprocessing strategy, Flip-n-Slide,
built for tiling large Earth observation images. Flip-n-Slide maintains physically realistic transfor-
mations of the input data and does not degrade the spatio-contextual information available for small
OoI in the overall training set. We show that Flip-n-Slide outperforms the previous benchmarked
approach at scale for tiled augmentations in all evaluation metrics, especially in cases of class im-
balance, improving the detection of rare phenomena even in large imagery.
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A APPENDIX

A.1 THE FLIP-N-SLIDE ALGORITHM

Algorithm 1 The Flip-n-Slide Algorithm.

Inputs: I: Large Image (x× y)
S: Set of sliding tile windows

(i× j) ∈ (x× y)
F : Set of corresponding transformations

(i× j) ∈ (x× y)

Output: T : Set of augmented image tiles, t ∈ T

1: for each (si×j ∈ S) ∩
i×j

(fi×j ∈ F ) do:

2: Tt = sii×j(I)
3: Tt = fi×j(si×j)
4: end for
5: return T

A.2 COMPUTATIONAL COST ANALYSIS

In contrast to the previously accepted convention of overlap tiling, Flip-n-slide simultaneously aug-
ments and tiles the input image at the preprocessing stage, introducing a larger computational cost
at this phase of the machine learning pipeline. The timing differences between the three tiling ap-
proaches used in this paper are detailed in Table 2. To find the run time, we run the 10240× 10240
pixel image that we used for our segmentation task seven times through each of the three tiling
strategies and take the average of these runs. We find that in both overlap approaches the 256× 256
tiles are most efficient.

Although the Flip-n-Slide approach incurs a higher computational cost upfront, it streamlines down-
stream processes and enhances model performance during inference, particularly for underrepre-
sented classes (Figure 2). By integrating data augmentation at the tiling stage of the pipeline,
Flip-n-Slide also eliminates the need for additional augmentation at train time, thereby reducing
computational costs at the training stage. Furthermore, many approaches that employ the previous
overlap convention at training time recommend using the same overlapping tiling approach for pre-
diction averaging at each pixel during test time Ünel et al. (2019); Zeng & Zheng (2019); Reina et al.
(2020); Akyon et al. (2022). However, this necessitates tracking pixel locations from tile to tile and
complicates the process of reconstructing test tiles back into the overall input image, incurring fur-
ther computational overhead at the inference stage of the pipeline. Therefore, despite the increased
computational cost associated with the Flip-n-Slide strategy during preprocessing, its performance
improvements for underrepresented classes justify the upstream computational investment. Depend-
ing on the choices that a user makes throughout the rest of the pipeline, both at train and test time,
these initial costs may result in reduced overhead later on.

Tiling Runtime for 10240× 10240 Input Image

Method 64× 64 Tiles 128× 128 Tiles 256× 256 Tiles 512× 512 Tiles

No Overlap 4.9s 4.3s 4.2s 4.0s

50% Overlap 16.4s 14.9s 14.9s 16.3s

Flip-n-Slide 71s 63s 59.3s 61s

Table 2: Computational cost for simultaneously tiling and augmenting a large input image using
the Flip-n-Slide approach. Although Flip-n-Slide has an increased upstream cost, its performance
improvements for underrepresented classes justify the upstream computational investment and these
initial costs may result in reduced overhead later on.
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Figure 3: Ablation studies on varying tile size confirm that our strategy leads to expected model
behavior. Here we show mAP for each study, averaged over three test runs with the standard devia-
tion shown in grey. Flip-n-Slide outperforms the conventional 50% overlap strategy even at smaller
input tile sizes.

A.3 ABLATION STUDIES

Ablation studies are necessary to disambiguate between the role of various fixed decisions on the
model outcomes. We explore the impacts of varying tile size choice on the model performance.
Previous studies show that larger tiles are more effective for segmentation tasks under traditional
augmentation strategies Zeng & Zheng (2019); Reina et al. (2020). We test the performance of the
Flip-n-Slide strategy across a range of two additional tile sizes: 64 × 64, 128 × 128. Due to GPU
size limitations we could not test tiles of 512 × 512 at the same batch size, so we do not include
it here. We reproduce the results of previous studies, finding that larger tile size does lead to better
performance. However, we find that even at smaller tile sizes, our approach outperform previous
strategies even when they are implemented at larger sizes. When 128× 128 tile sizes are generated
with Flip-n-Slide they perform at a better score to 256×256 tiles generate by a 50% overlap strategy
(Figure 3).
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Figure 4: To minimize redundancy in the Flip-n-Slide strategy, each overlapping tile is uniquely
permuted with a distinct, physically-realistic transformation, as shown here. Previous strategies
have not employed overlap-specific transformations; any augmentations have been applied across
all tiles or at random. Tiles are shown in false color to illustrate overlapping areas. Transparency
indicates areas that do not overlap with the blue tile shown here. They overlap with neighboring
blue tiles instead.
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