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ABSTRACT

Land cover (LC) maps are used extensively for nature conservation and landscape
planning, but low spatial resolution and coarse LC schemes typically limit their
applicability to large, broadly-defined habitats. In order to target smaller and more
specific habitats, LC maps must be developed at high resolution and fine class
detail, using methods that can handle strong class imbalance. In this work, we
present a new aerial photography data set with 12.5 cm ground resolution, an-
notated using a detailed, hierarchical land cover schema. We show that splitting
up the semantic segmentation process into multiple stages critically improves the
predictive performance, in particular by including the rare LC classes. We then
apply this method to create a new LC map of the Peak District National Park (1439
km2), England, at 12.5 cm resolution.

1 INTRODUCTION

In areas under pressure from high population density and intensive agriculture, habitats that support
high biodiversity are often small and thereby sparsely distributed. This leads to a very imbalanced
land cover (LC) class distribution, where the most relevant classes (for biodiversity research) occupy
a smaller area than others (Waldner et al., 2019; Tuia et al., 2023). Therefore, to be able to accurately
map these habitats, we require very-high-resolution remote sensing data to identify small areas of
habitat, and methods that can deal with imbalanced data sets. We address this challenge by the
following two contributions:

• The creation of a newly annotated, very-high-resolution (12.5 cm) data set of RGB aerial
photography and land cover. We used a hierarchical land cover schema, consisting of 23
classes, specifically designed for UK National Parks (Taylor et al., 1991b;a; 2000).

• The development of multi-stage semantic segmentation, where the semantic segmentation
task is split up in different stages corresponding to the hierarchical land cover schema. We
show that this improves the segmentation of imbalanced data sets.

∗: Co-senior author
This conference paper is based on our recent publication (Van der Plas et al., 2023b). When referring to

this work, please cite Van der Plas et al. (2023b) instead of this conference paper.
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Figure 1: Study area details. a) Our area of study is the Peak District National Park. b) RGB image
capture date per square kilometre tile. c) Distribution of 80 tiles used to create the data set.

We then applied this method to create a LC map at 12.5 cm resolution of the Peak District National
Park (PDNP, 1439 km2), providing the first updated very-high-resolution LC map of the PNDP since
the manually annotated LC map by Taylor et al. (1991b).

2 DATA

We created a new data set of LC annotated RGB images at 12.5 cm resolution, which we have made
publicly available (Van der Plas et al., 2023a). Our study area is the Peak District National Park
(PDNP), England, which totals 1439 km2 (Fig 1). Orthorectified aerial digital RGB photography of
the entire PDNP (1439 km2) was obtained at 12.5 cm ground resolution, at seven different imaging
dates (Fig 1b), through the Aerial Photography Great Britain (APGB) agreement for UK public
sector bodies (Bluesky, 2022). The image data were available as 1 km × 1 km tiles, which we
split into 64 m × 64 m (i.e., 512 pixels × 512 pixels) patches for input to the Convolutional Neural
Network (CNN) models. We then created a data set of 1027 non-overlapping patches, sampled from
80 tiles distributed across the PDNP (see Appendix A.1), which covered the variety in LC classes, the
variability within LC classes and the variability in image acquisition across different regions (caused
by different flight dates). We adapted the land cover schema from Taylor et al. (1991b;a), specifically
designed for mapping UK habitats, with the addition of a new wetland vegetation class (F3d, wet
grassland and rush pasture, also see Appendix A.2) and an extra subclass of upland heath (D1b, peaty
soil upland heath): see Table A.1. This is a hierarchical land cover schema, as illustrated in Fig 2c.
To facilitate further use of these data and this schema, we have created an online interpretation key
with additional detail and example images of each class (Alexander et al., 2023).

The 1027 patches (64 m × 64 m) selected for training and testing the models were annotated manu-
ally by visual image-interpretation according to the LC schema of Table A.1. Annotations were first
done by one human expert interpreter, and afterwards, they were all verified (and corrected where
necessary) by a second expert interpreter. Finally, field visits were conducted to resolve any remain-
ing ambiguities in the annotation, leading to a highly detailed and accurate data set representative of
upland UK landscapes. We used publicly available woodlands data to aid and speed up the manual
annotation of large woodlands in image patches (Forestry Commission, 2022). Further, OS NGD
data were used for mapping the F2, G2a and H classes (Figure 2 and Appendix A.3, (Ordnance
Survey, 2023)).

This data set was split randomly into 70% for training and 30% for testing. (The training set was
used as validation to optimise the method). Spatial stratification was not applied, because patches
were non-overlapping and spatial stratification was likely to bias the distributions of land cover,
neighbouring land cover, image capture date and seasonality.
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3 METHODS

3.1 U-NET MODEL TRAINING

We used Resnet50 U-Net models for all classifiers, all trained for 60 epochs using a batch size of
10, after which the model that achieved minimal training loss was selected. We considered two
loss functions (cross entropy and focal loss with γ = 0.75), and optimised five CNNs for each
loss function using an Adam optimizer for all classifier types (main, C, D and E and single-stage
baseline, Table A.2). The best (i.e., maximum accuracy) model of each type was then selected for
the final predictions.

CNNs received RGB image patches of 512 × 512 pixels as input. To avoid edge effects, we used a
padding of 22 pixels (meaning neighbouring image patches slightly overlapped). Input images were
z-scored, and during training, data were augmented by random horizontal and/or vertical flipping.
For training the main classifiers, LC annotations were relabelled to their corresponding main class
(e.g., C1 was relabelled to C). For training the detailed classifiers, LC annotations that were not
relevant to the classifier (e.g., C1 is not relevant to the D classifier) were blanked out and did not
contribute to the loss during training/testing.

Predictions were evaluated by pixel-wise comparison between the human-annotated LC labels and
the model-predicted LC labels. The following evaluation metrics were used, where TP = true posi-
tive, FP = false positive and FN = false negative predicted pixels, and c indexes the LC class (e.g.,
C1, C2, . . . ):

sensitivityc =
TPc

TPc + FNc
, precisionc =

TPc

TPc + FPc
, accuracy =

∑
c TPc∑

c (TPc + FNc)
(1)

3.2 MULTI-STAGE SEMANTIC SEGMENTATION

We developed a multi-stage approach because of the hierarchical LC schema, the high number of
classes (23), the strong non-uniformity of the class distribution (Fig 2b) and the intra-class variance
caused by the large area of interest (1439 km2). The classification process was split into four stages
(Fig 2a). First, one CNN model was used to predict the main classes directly from the RGB data.
Second, existing topography data were used to overwrite these predictions with any F2 (open water),
G (rock) or H (developed land) LC class (Ordnance Survey, 2023). Third, three separate CNN
classifiers were trained for the prediction of the detailed sub-classes. These detailed predictions
were then masked using the combined classes from the previous step. For example, the output of
the C-classifier would predict, directly from the RGB data, detailed C1, C2, C4 and C5 classes at
locations classified as C by the main classifier. Fourth, existing soil data (Natural England, 2022)
were used to disambiguate between subclasses of D (moorlands) with or without peaty soil: e.g.,
D1a or D1b (also see Appendix A.4).

4 RESULTS

We first trained the main classifier to classify the RGB images into the three main (natural) classes of
our LC schema: woodlands (C), moorlands (D) and grasslands (E), reaching 95% accuracy overall,
with sensitivity and precision above 0.9 for all classes (Table 1). Next, the C, D and E classifiers
achieved 92%, 72% and 87% accuracy, respectively, with precision and sensitivity values ranging
from 0.7 to 1 for most predicted classes (Table 1).

We found that our multi-stage semantic segmentation method (i.e., stacking the main and detailed
classifiers) outperformed conventional, single-stage CNN classification (i.e., directly classifying the
detailed classes, see Appendix A.5). Specifically, single-stage models could only predict 8/12 de-
tailed classes, failing to learn the low-density data classes. Instead, multi-stage semantic segmenta-
tion predicted all 12 classes successfully, while performance was similar to single-stage segmenta-
tion on the more prevalent LC classes (Table 2).

Finally, we used our multi-stage approach to predict the land cover of the whole PDNP (Fig A.1a).
This LC map provides, to the best of our knowledge, the first very-high-resolution LC map of the
PNDP using the LC schema designed for UK National Parks since 1991 (Taylor et al., 1991b). Fig
A.1b demonstrates the high resolution of predicted LC for three 1 km2 RGB image tiles.
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Figure 2: Multi-stage semantic
segmentation approach, where a)
land cover (LC) is predicted from
RGB images in multiple stages:
classification of the main class,
overlaying the OS NGD layer,
classification of the detailed sub-
classes, and post-processing to fur-
ther split up subclasses (based on
soil data). b) Distribution of data
per detailed class, where the train
and test data consisted of 70%
and 30% of the data, respectively.
c) The LC schema is hierarchical,
and multiple classifiers and post-
processing layers are used to pre-
dict all subclasses. Colours cor-
respond to the steps in panel a.
d) Three examples RGB image
patches (top) and their predicted
LC (bottom) are shown, demon-
strating the final predictions by us-
ing the main class predictions as a
mask for applying the combination
of detailed class classifiers. LC
codes are explained in Table A.1.

5 CONCLUSION AND DISCUSSION

We have created a data set of LC-annotated patches of RGB images that we have made publicly
available online (Van der Plas et al., 2023a). This also includes an interpretation key with image
examples and written descriptions of all classes (Alexander et al., 2023). We have annotated over
1000 patches of size 64 m × 64 m at the level of the detailed LC schema, spanning over 20 LC
classes (Table A.1). Patches were sampled across the PDNP (Figure 1), which consequently led
to variation in the flight dates (and associated variations in light conditions, seasonality effects on
vegetation, time of day, etc.). This presented an additional challenge to the model and led to some
misclassification because of spectral differences between some training and test data. This is an

Class name Code Sensitivity Precision Density Classifier

Wood and Forest Land C 0.91 0.96 24.2% Main
Moor and Heath Land D 0.97 0.93 34.6% Main
Agro-Pastoral Land E 0.93 0.93 41.3% Main

Broadleaved High Forest C1 0.73 0.92 9.9% C
Coniferous High Forest C2 0.99 0.78 9.9% C
Scrub C4 0.46 0.77 1.7% C
Clear Felled/New Plantings in Forest Areas C5 0.96 0.92 2.7% C
Upland Heath D1 0.84 0.80 10.8% D
Upland Grass Moor D2 0.70 0.82 8.8% D
Bracken D3 0.52 0.83 3.6% D
Heather/Grass/Blanket Peat Mosaic D6 0.64 0.48 4.6% D
Improved Pasture E2a 0.92 0.88 26.8% E
Rough Pasture E2b 0.67 0.76 10.6% E
Wetland, Peat Bog F3a 0.77 0.72 6.3% D
Wetland, Wet Grassland and Rush Pasture F3d 0.85 0.86 4.1% E

Table 1: Results of the individual main, C, D and E classifiers on the test set.
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Class name Code Sens. SS Prec. SS Sens. MS Prec. MS

Broadleaved High Forest C1 0.90 0.65 0.62 0.87
Coniferous High Forest C2 0.81 0.89 0.99 0.80
Scrub C4 Not pred. Not pred. 0.38 0.61
Clear Felled/New Plantings in Forest Areas C5 Not pred. Not pred. 0.95 0.94
Upland Heath D1 0.91 0.75 0.83 0.78
Blanket Peat Grass Moor D2 0.55 0.55 0.67 0.72
Bracken D3 Not pred. Not pred. 0.48 0.75
Upland Heath/Blanket Peat Mosaic D6 0.33 0.38 0.63 0.47
Improved Pasture E2a 0.89 0.93 0.90 0.85
Rough Pasture E2b 0.70 0.53 0.62 0.67
Wetland, Peat Bog F3a 0.92 0.48 0.77 0.70
Wetland, Wet Grassland and Rush Pasture F3d Not pred. Not pred. 0.67 0.73

Table 2: Effective sensitivity and precision values for single-stage (SS) and multi-stage (MS) clas-
sifiers. Not pred., not predicted.

inherent challenge of large-scale applications of LC prediction, and we hope that by making our
train and test data sets publicly available, this can further be addressed by the broader research
community. Given the large number of classes, the focus on natural LC instead of urban LC, the
spatial distribution and the variety both within and between classes, we believe that this data set is a
valuable resource to the community and is representative of much of the upland landscape found in
the UK.

We then developed a multi-stage approach for classifying hierarchical LC schemes with large vari-
ations in the density of each class. Deconstructing the classification process into multiple steps
achieved high accuracy on a large number of LC classes (95% accuracy on main classes, 92% on C,
72% on D and 87% on E), outperforming single-stage semantic segmentation for uneven class dis-
tributions. LC was predicted at high resolution (12.5 cm), enabling the identification of small habitat
patches such as individual trees, heather patches and scrub (Fig 2d). The multi-stage approach was
also able to handle complex cosmopolitan habitats such as wet grassland and rush pasture, which
occurs both within moorlands and grasslands, by including it in more than one detailed classifier.

Our approach can be used to detect a wide range of habitats from the same aerial image data, from
those with a broad species mix and mosaics to single species. This has wide-ranging applications
in landscape ecology and biodiversity monitoring, especially in regions where important habitats
are small and mixed. For example, these include fire risk modelling (Millin-Chalabi et al., 2023),
climate change vulnerability assessments (Santos et al., 2021), tree planting planning (Peak District
National Park Authority, 2022), biodiversity monitoring (Tuia et al., 2022; Rolnick et al., 2022) and
habitat mapping (O’Connell et al., 2015). Finally, as the interest and demand for habitat corridors
grows in the UK (UK Department for Environment, Food & Rural Affairs, 2018; Bailey et al., 2022),
detailed LC maps will be crucial to comprehend the extent and role of these mosaics and collections
of fragmented habitat patches (Van der Plas et al., 2023b).

DATA AND CODE AVAILABILITY

Data supporting this study (train and test data set of RGB images and land cover annotations) are
openly available from the Cranfield Online Research Data (CORD) repository at https://doi.
org/10.17862/cranfield.rd.24221314. All code, including example notebooks to load
the data and models, is available at https://github.com/pdnpa/cnn-land-cover.
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A APPENDIX

LC80-main LC80 LC20 Name New?
C (Wood and forest land) C1 C1 Broadleaved high forest -
C C2 C2 Coniferous high forest -
C C4 C4 Scrub -
C C5 C5 Clear felled/newly planted trees -
D (Moor and heath land) D1 D1a Upland heath -
D D1 D1b Upland heath, peaty soil Yes
D D2b D2b Upland grass moor -
D D2d D2d Blanket peat grass moor -
D D3 D3 Bracken ..
D D6a D6a Upland heath/grass mosaic -
D D6c D6c Upland heath/blanket peat mosaic -
E (Agro-pastoral land) E2a E2a Improved pasture -
E E2b E2b Rough pasture -
F (Water and Wetland) F2 F2 Open water, inland -
F F3a F3a Peat bog -
F D2/E2 F3d Wet grassland and rush pasture Yes
G (Rock and coastal land) G2 G2 Inland bare rock -
H (Developed land) H1a H1a Urban area -
H H1b H1b Major transport route -
H H2a H2a Quarries and mineral working -
H H2b H2b Derelict land -
H H3a H3a Isolated farmsteads -
H H3b H3b Other developed land -
I (Unclassified land) I I Unclassified land -

Table A.1: Land cover schema adapted from (Taylor et al., 1991b;a; 2000). LC80 is the original
schema, LC20 is the updated schema that we have created. LC80-main denotes the main class.
Only classes that are present in PDNP are included.

Classifier Loss function Mean Std Max Selected?

C Cross entropy 0.90 0.01 0.92 Yes
C Focal loss 0.87 0.10 0.93 -

D Cross entropy 0.67 0.03 0.72 Yes
D Focal loss 0.70 0.02 0.72 -

E Cross entropy 0.85 0.02 0.87 Yes
E Focal loss 0.83 0.02 0.84 -

Main Cross entropy 0.93 0.02 0.95 Yes
Main Focal loss 0.92 0.01 0.94 -

Single-stage Cross entropy 0.67 0.04 0.71 N/A

Table A.2: Average CNN performance. The loss function was varied for each of the four classifiers
(main, C, D, E). Five runs were performed for each model, for 60 epochs, saving the model at the
best epoch (in terms of train loss). Afterwards, the mean, standard deviation (std) and maximum
(max) accuracy on test data were computed for each classifier. Focal loss was used with γ = 0.75.
The ‘Selected?’ column indicates whether the maximum-performing model of that classifier type
was used in further analyses. Additionally, five runs were performed for the single-stage model,
which learns to classify the detailed classes directly, using the cross entropy loss function.

A.1 SELECTING IMAGE PATCHES FOR TRAINING AND TESTING

The image data were available as 1 km × 1 km tiles, which were split into 64 m × 64 m (i.e.,
512 pixels × 512 pixels) patches for input to the CNN models. To sample patches evenly across
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Figure A.1: a) Land cover predictions of entire Peak District National Park (1,439 km2) at 12.5 cm
resolution. b) Close-ups of the three insets shown in panel a). The RGB images (top) and model
predictions (bottom) of three 1 km x 1 km example tiles are shown.
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both space and land cover, while ensuring sufficient samples of the rare classes, we selected image
patches across the PDNP with the following procedure:

First, we used the 1991 census data (Taylor et al., 1991b) to select 50 tiles (of 1 km2 each) that
were representative of the overall LC distribution (of 1991). To do so, we generated 50,000 random
samples of 50 tiles, computed the L1 loss of the LC area distribution of the sample compared to
the LC area distribution of the entire PDNP, and selected the sample with the lowest L1 loss. This
resulted in a sample of 50 tiles that was spatially distributed evenly across the PDNP. From each of
these tiles, we randomly selected nine image patches (of 64 m × 64 m)—one from each block of a
3 × 3 grid across the tile—resulting in 450 image patches. This approach was used to prevent bias
in sample selection and to ensure the accuracy metrics used for validation were representative of the
final mapped outputs Maxwell et al. (2021). However, some classes are much more prevalent than
others, meaning that rare classes were very unlikely to be sampled sufficiently for model training.
Therefore, an additional 577 patches were selected manually across the same 50 tiles, plus 30 extra
tiles were selected to boost rare classes (Figure 1c).

A.2 NEW LC CLASS F3D

The new LC class wet grassland and rush pasture (F3d) posed a challenge for the classifiers, as it
typically occurs in small patches both within moorlands (D) and grasslands (E). As CNNs rely on
the context of the RGB image for classification, these different types of habitat surroundings were
initially found to confuse the CNN models. Therefore, we decided to: (1) include F3d as a category
in both the detailed D classifier and the detailed E classifier and (2) for the purpose of training the
main classifier only, remap any F3d polygons to D class. In other words, to the CNN classifiers, F3d
was presented as a subclass of D (moorlands) while allowing the possibility to classify E (grasslands)
into F3d given its presence in grasslands too.

A.3 MERGER WITH OS LAYER FOR DEVELOPED LAND

Ordnance Survey (OS) data were used to map the water (F2), rock (G2) and developed land (H)
classes, as these had already been accurately and recently mapped by Ordnance Survey (2023). After
the main classifier predicted the main class of the land cover, these predictions were overwritten by
the OS layer (i.e., areas that contained OS polygons replaced the model-predicted polygons, Fig 2a).
To do so, OS polygon classes were relabelled to our LC schema (the relabelling key is available
online). Quarry (H2a) OS annotations were found to be inaccurate, and therefore, they were all
manually verified and deleted if necessary.

A.4 POST-PROCESSING OF MODEL PREDICTIONS

Some detailed classes were distinguished based on secondary soil data (Fig 2a). Specifically, some
D classes had peat-soil and non-peat-soil variants (D1a and D1b, D2b and D2d, and D6a and D6c).
To identify these, the model predicted D1, D2 and D6 generally, and predictions were subsequently
labelled as peat/non-peat based on the ‘Peaty Soils Location’ data set from Natural England (Natural
England, 2022). For each predicted D1, D2 and D6 polygon, the intersection with the peaty soils
layer polygons was computed, and it was then assigned the peat label if the intersection was greater
than 50% of the area of the predicted polygon.

However, model predictions are reported and shown without this post-processing step, as it is a
deterministic separation of some classes that does not change the performance or accuracy of any
class (but does create extra classes).

A.5 SINGLE-STAGE SEMANTIC SEGMENTATION

For comparison with the multi-stage models, detailed LC classes were also predicted directly us-
ing conventional single-stage semantic segmentation. U-Nets were trained using exactly the same
protocols and parameters as previously described. Again, five networks were trained, and the best-
performing network was selected for further analysis (Table A.2). Networks were trained to predict
the detailed LC classes directly. (Only those that need to be model-predicted, i.e., from Table 2).
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